Lower 6 Chapter 14 Exponentials and logarithms

Chapter Overview

- 1. Sketch exponential graphs.
- 2. Use and interpret models that use exponential functions.
- 3. Be able to differentiate e^{kx} .
- 4. Understand the log function and use laws of logs.
- 5. Use logarithms to estimate values of constants in non-linear models.

6 Exponentials and logarithms	6.1	Know and use the function a^x and its graph, where a is positive. Know and use the function e^x and its graph	Understand the difference in shape between $a \le 1$ and $a \ge 1$	
	6.2	Know that the gradient of e^{kx} is equal to ke^{kx} and hence understand why the exponential model is suitable in many applications.	Realise that when the rate of change is proportional to the y value, an exponential model should be used.	
6 Exponentials and logarithms continued	6.3	Know and use the definition of $\log_a x$ as the inverse of α^x , where α is positive and $x \ge 0$ Know and use the function $\ln x$ and its graph Know and use $\ln x$ as the inverse function of e^x Understand and use the	$a \neq 1$ Solution of equations of the form $e^{ax+b} = p$ and $\ln(ax+b) = q$ is expected. Includes $\log_a a = 1$	
		laws of logarithms: $\log_a x + \log_a y = \log_a (xy)$ $\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$ $k\log_a x = \log_a x^k$ (including, for example, $k = -1 \text{ and } k = -\frac{1}{2}$)	G.	
	6.5	Solve equations of the form $a^x = b$	Students may use the change of base formula. Questions may be of the form, for example, $2^{3x-1} = 3$	
	6.6	Use logarithmic graphs to estimate parameters in relationships of the form $y = \alpha x^n$ and $y = kb^x$, given data for x and y	Plot $\log y$ against $\log x$ and obtain a straight line where the intercept is $\log a$ and the gradient is n Plot $\log y$ against x and obtain a straight line where the intercept is $\log k$ and the gradient is $\log b$	
	6.7	Understand and use exponential growth and decay; use in modelling (examples may include the use of e in continuous compound interest, radioactive decay, drug concentration decay, exponential growth as a model for population growth); consideration of limitations and refinements of exponential models.	Students may be asked to find the constants used in a model. They need to be familiar with terms such as initial, meaning when $t=0$. They may need to explore the behaviour for large values of t or to consider whether the range of values predicted is appropriate. Consideration of a second improved model may be required.	

Contrasting exponential graphs

On the same axes sketch $y = 3^x$, $y = 2^x$, $y = 1.5^x$

On the same axes sketch $y = 2^x$ and $y = \left(\frac{1}{2}\right)^x$

Graph Transformations Sketch $y = 2^{x+3}$

Differentiating $y = ae^{kx}$

If $y = e^{kx}$, where k is a constant, then $\frac{dy}{dx} = ke^{kx}$

Different e^{5x} with respect to x.

Different e^{-x} with respect to x.

Different $4e^{3x}$ with respect to x.

More Graph Transformations

Sketch
$$y = e^{3x}$$

Sketch
$$y = 5e^{-x}$$

Sketch
$$y = 2 + e^{\frac{1}{3}x}$$

Sketch
$$y = e^{-2x} - 1$$

Exponential Modelling

There are two key features of exponential functions which make them suitable for **population growth**:

- 1. a^x gets a times bigger each time x increases by 1. (Because $a^{x+1} = a \times a^x$)
 - With population growth, we typically have a fixed percentage increase each year. So suppose the growth was 10% a year, and we used the equivalent decimal multiplier, 1.1, as a. Then 1.1^t , where t is the number of years, would get 1.1 times bigger each year.
- 2. The rate of increase is proportional to the size of the population at a given moment.

This makes sense: The 10% increase of a population will be twice as large if the population itself is twice as large.

Example

[Textbook] The density of a pesticide in a given section of field, P mg/m², can be modelled by the equation $P=160e^{-0.006t}$ where t is the time in days since the pesticide was first applied.

- a. Use this model to estimate the density of pesticide after 15 days.
- b. Interpret the meaning of the value 160 in this model.
- c. Show that $\frac{dP}{dt} = kP$, where k is a constant, and state the value of k.
- d. Interpret the significance of the sign of your answer in part (c).
- e. Sketch the graph of P against t.

Logarithms

 $\log_a n$ ("said log base a of n") is equivalent to $a^x = n$. The log function outputs the **missing power**.

Examples

$$\log_{5} 25 = \log_{3} 81 = \log_{2} 32 = \log_{2} \left(\frac{1}{16}\right) = \log_{10} 1000 = \log_{4} 1 = \log_{4} 4 = \log_{2} \left(\frac{1}{27}\right) = \log_{4} \left(\frac{1}{16}\right) = \log_{4} \left(\frac{1}{2}\right) = \log_{4} \left(\frac{1}{2$$

With your calculator...

log

$$\log_{\square} \square \qquad \log_{3} 7 = \log_{5} 0.3 = 0$$

$$\ln 10 = \ln e = 0$$

log 100 =

Extension

[MAT 2015 1J] Which is the largest of the following numbers?

A)
$$\frac{\sqrt{7}}{2}$$
 B) $\frac{5}{4}$ C) $\frac{\sqrt{10!}}{3(6!)}$ D) $\frac{\log_2 30}{\log_3 85}$ E) $\frac{1+\sqrt{6}}{3}$

D)
$$\frac{\log_2 30}{\log_3 85}$$
 E) $\frac{1+\sqrt{6}}{3}$

[MAT 2013 1F] Three positive numbers a, b, c satisfy

$$\log_b a = 2$$

$$\log_b (c - 3) = 3$$

$$\log_a (c + 5) = 2$$

This information:

- A) specifies a uniquely;
- B) is satisfied by two values of a;
- C) is satisfied by infinitely many values of a;
- D) is contradictory

Laws of logs

Three main laws:

$$\log_a x + \log_a y = \log_a xy$$
$$\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$$
$$\log_a (x^k) = k \log_a x$$

Special cases:

$$\log_a a = 1 \quad (a > 0, \ a \neq 1)$$
$$\log_a 1 = 0 \quad (a > 0, \ a \neq 1)$$
$$\log\left(\frac{1}{x}\right) = \log(x^{-1}) = -\log(x)$$

Not in syllabus (but in MAT/PAT):

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Examples

Write as a single logarithm:

a.
$$\log_3 6 + \log_3 7$$

b.
$$\log_2 15 - \log_2 3$$

c.
$$2\log_5 3 + 3\log_5 2$$

d.
$$\log_{10} 3 - 4 \log_{10} \left(\frac{1}{2}\right)$$

Write in terms of $\log_a x$, $\log_a y$ and $\log_a z$

a.
$$\log_a(x^2yz^3)$$

b.
$$\log_a \left(\frac{x}{y^3}\right)$$

c.
$$\log_a \left(\frac{x\sqrt{y}}{z} \right)$$

d.
$$\log_a \left(\frac{x}{a^4}\right)$$

Solving equations with logs

Solve the equation $\log_{10} 4 + 2 \log_{10} x = 2$

Edexcel C2 Jan 2013 Q6

Given that $2 \log_2(x + 15) - \log_2 x = 6$,

(a) show that $x^2 - 34x + 225 = 0$.

(b) Hence, or otherwise, solve the equation $2 \log_2(x+15) - \log_2 x = 6$.

(2)

(5)

Extension

- [AEA 2010 Q1b] Solve the equation $\log_3(x-7) - \frac{1}{2}\log_3 x = 1 - \log_3 2$
- [AEA 2008 Q5i] Anna, who is confused about the rules of logarithms, states that

$$(\log_3 p)^2 = \log_3(p^2)$$

 $\log_3(p+q) = \log_3 p + \log_3 q$
However, there is a value for p and a value for q for which both statements are correct. Find their values.

[MAT 2007 11] Given that a and b are positive and

 $4(\log_{10} a)^2 + (\log_{10} b)^2 = 1$ what is the greatest possible value of a?

- [MAT 2002 1F] Observe that $2^3 = 8$, $2^5 = 32$, $3^2 = 9 \text{ and } 3^3 = 27. \text{ From these facts, we}$ can deduce that log₂ 3 is:

 - A) between $1\frac{1}{3}$ and $1\frac{1}{2}$ B) between $1\frac{1}{2}$ and $1\frac{2}{3}$
 - C) between $1\frac{2}{3}$ and 2
 - D) none of the above

Solving equations with exponential terms

Solve
$$3^x = 20$$

Solve
$$5^{4x-1} = 61$$

Solve
$$3^x = 2^{x+1}$$

Solve the equation $5^{2x} - 12(5^x) + 20 = 0$, giving your answer to 3sf.

Solve $3^{2x-1} = 5$, giving your answer to 3dp.

Solve $2^x 3^{x+1} = 5$, giving your answer in exact form.

Solve $3^{x+1} = 4^{x-1}$, giving your answer to 3dp.

Extension

 \blacksquare [MAT 2011 1H] How many *positive* values xwhich satisfy the equation:

$$x = 8^{\log_2 x} - 9^{\log_3 x} - 4^{\log_2 x} + \log_{0.5} 0.25$$

[MAT 2013 1J] For a real number x we denote by [x] the largest integer less than or equal to x. Let n be a natural number. The integral

$$\int_0^n [2^x] \ dx$$

equals:

- (A) $\log_2((2^n 1)!)$ (B) $n \ 2^n \log_2((2^n)!)$ (C) $n \ 2^n$
- (D) $\log_2((2^n)!)$

Natural logarithms

The inverse of
$$y = e^x$$
 is $y = \ln x$

$$ln e^x =$$

$$e^{\ln x} =$$

Solve
$$e^x = 5$$

Solve
$$2 \ln x + 1 = 5$$

Solve
$$e^{2x} + 2e^x - 15 = 0$$

Solve
$$e^{x} - 2e^{-x} = 1$$

Solve
$$ln(3x + 1) = 2$$

Solve
$$e^{2x} + 5e^x = 6$$

Solve $2^x e^{x+1} = 3$ giving your answer as an exact value.

Graphs for Exponential Data

Turning non-linear graphs into linear ones

Case 1: Polynomial → Linear

Suppose our original model was a polynomial one*:

$$y = ax^n$$

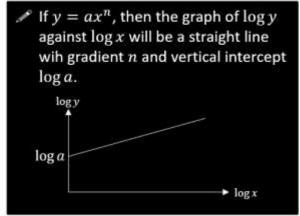
Then taking logs of both sides:

$$\log y = \log ax^n$$

$$\log y = \log a + n \log x$$

We can compare this against a straight line:

$$Y = mX + c$$



* We could also allow non-integer n; the term would then not strictly be polynomial, but we'd still say the function had "polynomial growth".

Case 2: Exponential → Linear

Suppose our original model was an exponential one:

$$y = ab^x$$

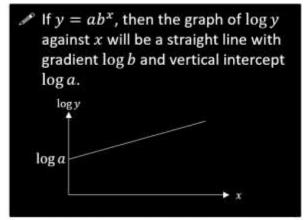
Then taking logs of both sides:

$$\log y = \log ab^x$$

$$\log y = \log a + x \log b$$

Again we can compare this against a straight line:

$$Y = mX + c$$



The key difference compared to Case 1 is that we're **only logging the** *y* **values** (e.g. number of transistors), not the *x* values (e.g. years elapsed). **Note that you do not need to memorise the contents of these boxes and we will work out from scratch each time...**

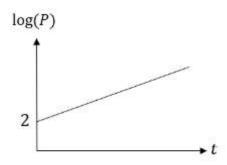
In summary, logging the y-axis turns an exponential graph into a linear one. Logging both the x and y-axis turns a polynomial graph into a linear one.

[Textbook] The graph represents the growth of a population of bacteria, P, over t hours. The graph has a gradient of 0.6 and meets the vertical axis at (0,2) as shown.

A scientist suggests that this growth can be modelled by the equation $P = ab^t$, where a and b are constants to be found.

- a. Write down an equation for the line.
- b. Using your answer to part (a) or otherwise, find the values of a and b, giving them to 3 sf where necessary.

Interpret the meaning of the constant a in this model.



[Textbook] The table below gives the rank (by size) and population of the UK's largest cities and districts (London is number 1 but has been excluded as an outlier).

City	B'ham	Leeds	Glasgow	Sheffield	Bradford
Rank, R	2	3	4	5	6
Population, P	1 000 000	730 000	620 000	530 000	480 000

The relationship between the rank and population can be modelled by the formula: $P = aR^n$ where a and n are constants.

Textbook Error: They use $R = aP^{\pi}$ but then plot $\log P$ against $\log R$.

- a) Draw a table giving values of log R and log P to 2dp.
- b) Plot a graph of $\log R$ against $\log P$ using the values from your table and draw the line of best fit.
- c) Use your graph to estimate the values of a and n to two significant figures.

Dr Frost's wants to predict his number of Twitter followers P (@DrFrostMaths) t years from the start 2015. He predicts that his followers will increase exponentially according to the model $P=ab^t$, where a,b are constants that he wishes to find.

He records his followers at certain times. Here is the data:

Years *t* **after 2015**: 0.7 1.3 2.2 **Followers** *P*: 2353 3673 7162

- a) Draw a table giving values of t and $\log P$ (to 3dp).
- b) A line of best fit is drawn for the data in your new table, and it happens to go through the first data point above (where t=0.7) and last (where t=2.2). Determine the equation of this line of best fit. (The y-intercept is 3.147)
- c) Hence, determine the values of a and b in the model.
- d) Estimate how many followers Dr Frost will have at the start of 2020 (when t = 5).