edexcel

Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify
$$\sqrt{50}$$

$$\sqrt{50} = \sqrt{25 \times 2}$$
1Choose two numbers that are
factors of 50. One of the factors
must be a square number $= \sqrt{25} \times \sqrt{2}$ 2Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ $= 5 \times \sqrt{2}$ 3Use $\sqrt{25} = 5$

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

$\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$	1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
$=\sqrt{49} \times \sqrt{3} - 2\sqrt{4} \times \sqrt{3}$ $= 7 \times \sqrt{3} - 2 \times 2 \times \sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ 3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
$= 7 \times \sqrt{3} - 2 \times 2 \times \sqrt{3}$ $= 7\sqrt{3} - 4\sqrt{3}$ $= 3\sqrt{3}$	 3 Use √49 = 7 and √4 = 2 4 Collect like terms

Example 3 Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$ $= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4}$ = 7 - 2 = 51 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$ 2 Collect like terms: $-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$

Example 4 Rationalise $\frac{1}{\sqrt{3}}$

$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	1 Multiply the numerator and denominator by $\sqrt{3}$
$=\frac{1\times\sqrt{3}}{\sqrt{9}}$	2 Use $\sqrt{9} = 3$
$=\frac{\sqrt{3}}{3}$	

Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$

$\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$	1 Multiply the numerator and denominator by $\sqrt{12}$
$=\frac{\sqrt{2}\times\sqrt{4\times3}}{12}$	2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12. One of the factors must be a square number
$=\frac{2\sqrt{2}\sqrt{3}}{12}$	3 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ 4 Use $\sqrt{4} = 2$
$=\frac{\sqrt{2}\sqrt{3}}{6}$	5 Simplify the fraction: $\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example 6	Rationalise and simplify $\frac{3}{2+\sqrt{5}}$				
	$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1	Multiply the numerator and denominator by $2 - \sqrt{5}$		
	$= \frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$	2	Expand the brackets		
	$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$	3	Simplify the fraction		
	$(2+\sqrt{5})(2-\sqrt{5})$ = $\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$ = $\frac{6-3\sqrt{5}}{-1}$ = $3\sqrt{5}-6$	4	Divide the numerator by -1 Remember to change the sign of all terms when dividing by -1		

Practice

1	Simplify.	Hint		
	a $\sqrt{45}$	b $\sqrt{125}$	One of the two	
	$\mathbf{c} \sqrt{48}$	$\mathbf{d} = \sqrt{175}$	numbers you choose at the start	
	$\mathbf{e} \sqrt{300}$	$\mathbf{f} = \sqrt{28}$	must be a square	
	$\mathbf{g} = \sqrt{72}$	$\mathbf{h} = \sqrt{162}$	number.	

2	Sin	Simplify.			
	a	$\sqrt{72} + \sqrt{162}$			
	c	$\sqrt{50} - \sqrt{8}$			
	e	$2\sqrt{28} + \sqrt{28}$			

b	$\sqrt{45} - 2\sqrt{5}$
d	$\sqrt{75} - \sqrt{48}$
f	$2\sqrt{12} - \sqrt{12} + \sqrt{27}$

Watch out!

Γ

Check you have chosen the highest square number at the start.

3	Expand and simplify.			
	a	$(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$		

c $(4-\sqrt{5})(\sqrt{45}+2)$

b $(3+\sqrt{3})(5-\sqrt{12})$ **d** $(5+\sqrt{2})(6-\sqrt{8})$

٦

4 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{5}}$$
b $\frac{1}{\sqrt{11}}$ c $\frac{2}{\sqrt{7}}$ d $\frac{2}{\sqrt{8}}$ e $\frac{2}{\sqrt{2}}$ f $\frac{5}{\sqrt{5}}$ g $\frac{\sqrt{8}}{\sqrt{24}}$ h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$
 b $\frac{2}{4+\sqrt{3}}$ **c** $\frac{6}{5-\sqrt{2}}$

Extend

- 6 Expand and simplify $(\sqrt{x} + \sqrt{y})(\sqrt{x} \sqrt{y})$
- 7 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{9}-\sqrt{8}}$$
 b $\frac{1}{\sqrt{x}-\sqrt{y}}$

edexcel

Answers

1	c e	$3\sqrt{5}$ $4\sqrt{3}$ $10\sqrt{3}$	d f	5√5 5√7 2√7	
2	a c	$6\sqrt{2}$ $15\sqrt{2}$ $3\sqrt{2}$ $6\sqrt{7}$	b d	$9\sqrt{2}$ $\sqrt{5}$ $\sqrt{3}$ $5\sqrt{3}$	
3		-1 10 $\sqrt{5}$ -7		$9-\sqrt{3}$ 26-4 $\sqrt{2}$	
4	a	$\frac{\sqrt{5}}{5}$ $2\sqrt{7}$		$\frac{\sqrt{11}}{11}$ $\frac{\sqrt{2}}{2}$	
	c e	$\frac{2\sqrt{7}}{7}$ $\sqrt{2}$ $\frac{\sqrt{3}}{3}$	f	$\frac{1}{2}$ $\sqrt{5}$ $\frac{1}{3}$	
_		$\overline{3}$ $\frac{3+\sqrt{5}}{4}$		0	$6(5+\sqrt{2})$
5			D	$\frac{2(4-\sqrt{3})}{13}$ c	$\frac{6(5+\sqrt{2})}{23}$
7	a	$3+2\sqrt{2}$	b	$\frac{\sqrt{x} + \sqrt{y}}{x - y}$	

