

# P1 Chapter 10 :: Trigonometric Identities & Equations

jfrost@tiffin.kingston.sch.uk

www.drfrostmaths.com @DrFrostMaths

Last modified: 21st September 2018

### www.drfrostmaths.com

Everything is **completely free**. Why not register? Register now to interactively practise questions on this topic, including past paper questions and extension questions (including MAT + UKMT). Teachers: you can create student accounts (or students can register themselves), to set work, monitor progress and even create worksheets.



### **Chapter Overview**

Those who did IGCSE Further Maths or Additional Maths will be familiar with this content. Exact trigonometric values for 30°, 45°, 90° were in the GCSE syllabus.

**1**:: Know exact trig values for 30°, 45°, 60° and understand unit circle. 2:: Use identities  $\frac{\sin x}{\cos x} \equiv \tan x$  and  $\sin^2 x + \cos^2 x \equiv 1$ Show that  $3\sin^2 x + 7\sin x = \cos^2 x - 4$ can be written in the form

**3**:: Solve equations of the form  $sin(n\theta) = k$  and  $sin(\theta \pm \alpha) = k$ 

Solve sin(2x) (cos 2x + 1) = 0, for  $0 \le x < 360^{\circ}$ . **4**:: Solve equations which are quadratic in sin/cos/tan.

 $4\sin^2 x + 7\sin x + 3 = 0$ 

Solve, for  $0 \le x < 360^\circ$ , the equation

 $4\sin^2 x + 9\cos x - 6 = 0$ 

# sin/cos/tan of 30°, 45°, 60°

You will frequently encounter angles of 30°, 60°, 45° in geometric problems. Why?

Although you will always have a calculator, you need to know how to derive these. **All you need to remember:** 

Praw half a unit square and half an equilateral triangle of side 2.



# The Unit Circle and Trigonometry

For values of  $\theta$  in the range  $0 < \theta < 90^{\circ}$ , you know that  $\sin \theta$  and  $\cos \theta$  are lengths on a right-angled triangle:



And what would be the **gradient** of the bold line?

?

But how do we get the rest of the graph for *sin, cos* and *tan* when  $90^{\circ} \le \theta \le 360^{\circ}$ ?

The point *P* on a unit circle, such that *OP* makes an angle  $\theta$  with the positive *x*-axis, has coordinates ( $\cos \theta$ ,  $\sin \theta$ ). *OP* has gradient  $\tan \theta$ .



Angles are always measured **anticlockwise**. (Further Mathematicians will encounter the same when they get to Complex Numbers)

We can consider the coordinate  $(\cos \theta, \sin \theta)$ as  $\theta$  increases from 0 to 360°...

# Mini-Exercise

Use the unit circle to determine each value in the table, **using either "0", "+ve", "-ve", "1", "-1" or "undefined"**. Recall that the point on the unit circle has coordinate  $(\cos \theta, \sin \theta)$  and *OP* has gradient  $\tan \theta$ .

|                           | cos θκ | $\frac{x}{\sin \theta}$ | $y$ -value $f$ Grad tan $\theta$ | dient of <i>OP</i> .     | $\cos 	heta$ | sin $	heta$ | $\tan 	heta$ |
|---------------------------|--------|-------------------------|----------------------------------|--------------------------|--------------|-------------|--------------|
| $\theta = 0$              | 1      | 0                       | 0                                | $\theta = 180^{\circ}$ ? |              | ?           |              |
| $0 < \theta < 90^{\circ}$ |        | ?                       |                                  | 180° < θ < 270°<br>?     |              | ?           |              |
| $\theta = 90^{\circ}$ ?   |        | ?                       |                                  | $\theta = 270^{\circ}$ ? |              | ?           |              |
| 90° < θ < 180°<br>?       |        | ?                       |                                  | 270° < θ < 360°<br>?     |              | ?           |              |

# The Unit Circle and Trigonometry

The unit circles explains the behaviour of these trigonometric graphs beyond 90°. However, the easiest way to remember whether sin(x), cos(x), tan(x) are positive or negative is to just do a **very quick sketch (preferably mentally!)** of the corresponding graph.



**Note:** The textbook uses something called *'CAST diagrams'*. I will not be using them in these slides, but you may wish to look at these technique as an alternative approach to various problems in the chapter.

# A Few Trigonometric Angle Laws

The following are all easily derivable using a quick sketch of a trigonometric graph, and are merely a <u>convenience</u> so you don't always have to draw out a graph every time. You are highly encouraged to **memorise these** so that you can do exam questions faster.



4 
$$sin(x) = cos(90^{\circ} - x)$$
  
e.g.  $sin(50^{\circ}) = cos(40^{\circ})$ 

Remember from the previous chapter that "cosine" by definition is the sine of the "complementary" angle. This was/is never covered in the textbook but caught everyone by surprise when it came up in a C3 exam.

### Examples

### Without a calculator, work out the value of each below.



### Test Your Understanding

Without a calculator, work out the value of each below.

$$cos(315^{\circ}) = ?$$
  
 $sin(420^{\circ}) = ?$   
 $tan(-120^{\circ}) = ?$   
 $tan(-45^{\circ}) = ?$   
 $sin(135^{\circ}) = ?$ 

$$\sin(x) = \sin(180 - x)$$

• 
$$\cos(x) = \cos(360 - x)$$

# Exercise 10A/B

Pearson Pure Mathematics Year 1/AS Page 207, 209

# **Trigonometric Identities**





### Application of identities #1: Proofs



### **More Examples**



**Fro Tip #2**: In any addition/subtraction involving at least one fraction (with trig functions), always combine algebraically into one.



**Fro Tip #3**: Look out for  $1 - \sin^2 \theta$  and  $1 - \cos^2 \theta$ . Students often don't spot that these can be simplified.

### Test Your Understanding



Prove that 
$$\frac{\cos^4 \theta - \sin^4 \theta}{\cos^2 \theta} \equiv 1 - \tan^2 \theta$$
?

### AQA IGCSE Further Maths Worksheet

?

Prove that 
$$\tan^2 \theta \equiv \frac{1}{\cos^2 \theta} - 1$$

# Exercise 10C

### Pearson Pure Mathematics Year 1/AS Page 211-212

### **Extension:**

[MAT 2008 1C] The simultaneous equations in x, y,

 $(\cos \theta)x - (\sin \theta)y = 2$  $(\cos \theta)x + (\sin \theta)y = 1$ 

are solvable:

- A) for all values of  $\theta$  in range  $0 \le \theta < 2\pi$
- B) except for one value of  $\theta$  in range  $0 \le \theta < 2\pi$
- C) except for two values of  $\theta$  in range  $0 \le \theta < 2\pi$
- D) except for three values of  $\theta$  in range  $0 \le \theta < 2\pi$



# Solving Trigonometric Equations

Remember those trigonometric angle laws (on the right) earlier this chapter? They're about to become **super freakin' useful**!

Reminder of 'trig laws':

- $\sin(x) = \sin(180 x)$
- $\cos(x) = \cos(360 x)$
- sin, cos repeat every 360°
   but tan every 180°

Solve 
$$\sin \theta = \frac{1}{2}$$
 in the interval  $0 \le \theta \le 360^{\circ}$ .

Froculator Note: When you do  $sin^{-1}$ ,  $cos^{-1}$  and  $tan^{-1}$  on a calculator, it gives you only one value, known as the principal value.

Solve  $5 \tan \theta = 10$  in the interval  $-180^{\circ} \le \theta < 180^{\circ}$ 



**Fro Tip:** Look out for the solution range required.  $-180 \le \theta < 180^{\circ}$  is a particularly common one.

*tan* repeats every 180°, so can add/subtract 180° as we please.

## Slightly Harder Ones...

Solve 
$$\sin \theta = -\frac{1}{2}$$
 in the interval  $0 \le \theta \le 360^{\circ}$ .



### Solve $\sin \theta = \sqrt{3} \cos \theta$ in the interval $0 \le \theta \le 360^{\circ}$ .



**Hint:** The problem here is that we have two different trig functions. Is there anything we can divide both sides by so we only have one trig function?

### Test Your Understanding

Solve  $2\cos\theta = \sqrt{3}$  in the interval  $0 \le \theta \le 360^{\circ}$ .



Solve  $\sqrt{3}\sin\theta = \cos\theta$  in the interval  $-180^{\circ} \le \theta \le 180^{\circ}$ .



Pearson Pure Mathematics Year 1/AS Page 215-216

### Harder Equations

Harder questions replace the angle  $\theta$  with a linear expression.

Solve  $\cos 3x = -\frac{1}{2}$  in the interval  $0 \le x \le 360^{\circ}$ .

**Froflections**: As mentioned before, in general you tend to get a <u>pair</u> of values per 360° (for any of sin/cos/tan), except for  $\cos \theta = \pm 1$  or  $\sin \theta = \pm 1$ :



Thus once getting your first pair of values (e.g. using  $sin(180 - \theta)$  or  $cos(360 - \theta)$  to get the second value), keep adding 360° to generate new pairs.

**STEP 1**: Adjust the range of values for  $\theta$  to match the expression inside the cos.

**STEP 2**: Immediately after applying an inverse trig function (and BEFORE dividing by 3!), find all solutions up to the end of the interval.

**STEP 3**: <u>Then</u> do final manipulation to each value.

### **Further Examples**

Solve  $sin(2x + 30^\circ) = \frac{1}{\sqrt{2}}$  in the interval  $0 \le x \le 360^\circ$ .

### Solve $\sin x = 2 \cos x$ in the interval $0 \le x < 300^{\circ}$



?

### Test Your Understanding

### Edexcel C2 Jan 2013 Q4

Solve, for  $0 \le x < 180^\circ$ ,

 $\cos(3x-10^\circ) = -0.4$ ,

giving your answers to 1 decimal place. You should show each step in your working.
(7)

?

Pearson Pure Mathematics Year 1/AS Page 218-219

# Quadratics in sin/cos/tan

We saw that an equation can be 'quadratic in' something, e.g.  $x - 2\sqrt{x} + 1 = 0$ is 'quadratic in  $\sqrt{x}$ ', meaning that  $\sqrt{x}$  could be replaced with another variable, say y, to produce a quadratic equation  $y^2 - 2y + 1 = 0$ .

Solve  $5\sin^2 x + 3\sin x - 2 = 0$  in the interval  $0 \le x \le 360^\circ$ .

Method 1: Use a substitution.



Method 2: Factorise without substitution.



**Fropinion**: I'd definitely advocate Method 2 provided you feel confident with it. Method 1 feels clunky.

### More Examples

Solve  $\tan^2 \theta = 4$  in the interval  $0 \le x \le 360^\circ$ .



### Solve $2\cos^2 x + 9\sin x = 3\sin^2 x$ in the interval $-180^\circ \le x \le 180^\circ$ .



**Tip**: We have an identity involving  $sin^2$ and  $cos^2$ , so it makes sense to change the <u>squared one</u> that would <u>match all the</u> <u>others</u>.

### Test Your Understanding

# Edexcel C2 Jan 2010 Q2(a) Show that the equation $5 \sin x = 1 + 2 \cos^2 x$ can be written in the form $2 \sin^2 x + 5 \sin x - 3 = 0.$ (b) Solve, for $0 \le x < 360^\circ$ , $2 \sin^2 x + 5 \sin x - 3 = 0.$ (4)



## Exercise 10F

### Pearson Pure Mathematics Year 1/AS Page 221-222

### Extension

1 [MAT 2010 1C] In the range  $0 \le x < 360^{\circ}$ , the equation  $\sin^2 x + 3 \sin x \cos x + 2 \cos^2 x = 0$ Has how many solutions?



2 [MAT 2014 1E] As x varies over the real numbers, the largest value taken by the function  $(4 \sin^2 x + 4 \cos x + 1)^2$  equals what?

