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Chapter Overview

1:: Know exact trig values 
for 30°, 45°, 60° and 
understand unit circle.

4:: Solve equations which are 
quadratic in sin/cos/tan.

Solve, for 0 ≤ 𝑥 < 360°, the 
equation

4 sin2 𝑥 + 9 cos 𝑥 − 6 = 0

2:: Use identities 
sin 𝑥

cos 𝑥
≡ tan 𝑥 and 

sin2 𝑥 + cos2 𝑥 ≡ 1

Those who did IGCSE Further Maths or Additional Maths will be familiar with this 
content. Exact trigonometric values for 30°, 45°, 90° were in the GCSE syllabus.

Show that 3 sin2 𝑥 + 7 sin 𝑥 = cos2 𝑥 − 4
can be written in the form 
4 sin2 𝑥 + 7 sin 𝑥 + 3 = 0

3:: Solve equations of the form 
sin 𝑛𝜃 = 𝑘 and sin 𝜃 ± 𝛼 = 𝑘

Solve sin 2𝑥 cos 2𝑥 + 1 = 0, 
for 0 ≤ 𝑥 < 360°.



sin/cos/tan of 30°, 45°, 60°

You will frequently encounter angles of 30°, 60°, 45° in geometric problems. Why? 
We see these angles in equilateral triangles and half squares.?

Although you will always have a calculator, you need to know how to derive these.
All you need to remember: 
! Draw half a unit square and half an equilateral triangle of side 2.
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tan 30° =
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2
tan 60° = 3
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The Unit Circle and Trigonometry

For values of 𝜃 in the range 
0 < 𝜃 < 90°, you know 
that sin 𝜃 and cos 𝜃 are 
lengths on a right-angled 
triangle:

1

𝜃

𝐬𝐢𝐧𝜽

𝐜𝐨𝐬𝜽

And what would be the 
gradient of the bold line?

𝒎 =
𝚫𝒚

𝚫𝒙
=
𝐬𝐢𝐧𝜽

𝐜𝐨𝐬 𝜽
But also: 𝐭𝐚𝐧𝜽 =

𝒐𝒑𝒑

𝒂𝒅𝒋
=

𝐬𝐢𝐧 𝜽

𝐜𝐨𝐬 𝜽

∴ 𝒎 = 𝐭𝐚𝐧𝜽

?

?

But how do we get the rest of the graph for 
𝑠𝑖𝑛, 𝑐𝑜𝑠 and 𝑡𝑎𝑛 when 90° ≤ 𝜃 ≤ 360°?

?

! The point 𝑃 on a unit circle, such that 𝑂𝑃
makes an angle 𝜃 with the positive 𝑥-axis, 
has coordinates cos 𝜃 , sin 𝜃 .
𝑂𝑃 has gradient tan 𝜃.

𝑥

𝑦

𝑃 cos 𝜃 , sin 𝜃

𝜃

1

Angles are always measured anticlockwise.
(Further Mathematicians will encounter the same when they get to 
Complex Numbers)

We can consider the coordinate cos 𝜃 , sin 𝜃
as 𝜃 increases from 0 to 360°…

𝑂



Mini-Exercise

𝜃 = 0

0 < 𝜃 < 90°

cos 𝜃 sin 𝜃 tan 𝜃

Use the unit circle to determine each value in the table, using either “0”, “+ve”, “-ve”, “1”, “-1” or “undefined”. 
Recall that the point on the unit circle has coordinate (cos 𝜃 , sin 𝜃) and 𝑂𝑃 has gradient tan 𝜃.

𝑥

𝑦
𝑃

𝜃

1

𝑥

𝑦

𝑃

𝜃 = 90°

𝑥

𝑦

𝜃
𝑃

90° < 𝜃 < 180°

𝑥

𝑦
𝑃

𝜃

1

𝑥-value 𝑦-value Gradient of 𝑂𝑃.

0 0

+ve +ve +ve

0 1 Undefined
(vertical lines don’t have 
a well-defined gradient)

-ve +ve -ve

𝜃 = 180°

180° < 𝜃 < 270°

cos 𝜃 sin 𝜃 tan 𝜃

𝑥

𝑦

𝑃

𝜃

𝑥

𝑦

𝑃

𝜃 = 270°

𝑥

𝑦

𝜃

𝑃

270° < 𝜃 < 360°

𝑥

𝑦
𝑃

𝜃

-1 0 0

-ve -ve +ve

0 1 Undefined

+ve -ve -ve

𝜃
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The Unit Circle and Trigonometry

The unit circles explains the behaviour of these trigonometric graphs beyond 90°. 
However, the easiest way to remember whether sin 𝑥 , cos 𝑥 , tan 𝑥 are positive or 
negative is to just do a very quick sketch (preferably mentally!) of the corresponding graph.

90 180 270 360
𝑥

𝑦 positive
for 0 < 𝑥 < 180°

negative
for 180° < 𝑥 < 360°

𝑦 = sin 𝑥

Note: The textbook uses 
something called ‘CAST diagrams’. 
I will not be using them in these 
slides, but you may wish to look at 
these technique as an alternative 
approach to various problems in 
the chapter.



A Few Trigonometric Angle Laws

The following are all easily derivable using a quick sketch of a trigonometric graph, and are 
merely a convenience so you don’t always have to draw out a graph every time.
You are highly encouraged to memorise these so that you can do exam questions faster. 

sin 𝑥 = sin 180° − 𝑥1

180

𝑦 = sin 𝑥

30 150

We saw this in the previous chapter 
when covering the ‘ambiguous 
case’ when using the sine rule.

cos 𝑥 = cos 360° − 𝑥2
330

𝑦 = cos 𝑥

30 360

e.g. sin 150° = sin 30°

e.g. cos 330° = cos 30°

𝑠𝑖𝑛 and 𝑐𝑜𝑠 repeat every 360°
but 𝑡𝑎𝑛 every 180°

3

e.g. sin 390° = sin 30°

𝑦 = sin 𝑥

30 360 390 720

sin 𝑥 = cos 90° − 𝑥4
Remember from the previous chapter that “cosine” by 
definition is the sine of the “complementary” angle.
This was/is never covered in the textbook but caught 
everyone by surprise when it came up in a C3 exam.e.g. sin 50° = cos 40°



Examples

Without a calculator, work out the value of each below.

Use the ‘laws’ where you can, 
but otherwise just draw out a 
quick sketch of the graph.

• sin 𝑥 = sin 180 − 𝑥
• cos 𝑥 = cos 360 − 𝑥
• 𝑠𝑖𝑛, 𝑐𝑜𝑠 repeat every 360°

but 𝑡𝑎𝑛 every 180°

tan 225° = 𝐭𝐚𝐧 𝟒𝟓° = 𝟏

tan 210° = 𝐭𝐚𝐧 𝟑𝟎° =
𝟏

𝟑

sin 150° = 𝐬𝐢𝐧 𝟑𝟎° =
𝟏

𝟐

cos 300° = 𝐜𝐨𝐬 𝟔𝟎° =
𝟏

𝟐

sin −45° = −𝐬𝐢𝐧 𝟒𝟓° = −
𝟏

𝟐

cos 750° = 𝐜𝐨𝐬 𝟑𝟎° =
𝟑

𝟐

cos 120° = − 𝐜𝐨𝐬 𝟔𝟎° = −
𝟏

𝟐

𝑡𝑎𝑛 repeats every 180°
so can subtract 180°

For 𝑠𝑖𝑛 we can subtract 
from 180°.

For 𝑐𝑜𝑠 we can subtract 
from 360°.

We have to resort to a sketch for this one.

Froflections: It’s not hard to see from the 
graph that in general, sin −𝑥 = − sin 𝑥 .
Even more generally, a function 𝑓 is known as 
an ‘odd function’ if 𝑓 −𝑥 = −𝑓(𝑥). 
𝑡𝑎𝑛 is similarly ‘odd’ as tan −𝑥 = − tan 𝑥 .

A function is even if 𝑓 −𝑥 = 𝑓(𝑥). Examples 
are 𝑓 𝑥 = cos(𝑥) and 𝑓 𝑥 = 𝑥2 as 
cos −𝑥 = cos(𝑥) and −𝑥 2 = 𝑥 2. You do 
not need to know this for the exam.

𝑦 = sin 𝑥

−45 45
𝑥

1

2

−
1

2

Again, let’s just use a graph.

𝑦 = cos 𝑥

90
𝑥

1

2

180
120

60

The graph is rotationally 
symmetric about 90°. Since 120°
is 30° above 90°, we get the same 
𝑦 value for 90° − 30° = 60°, 
except negative.

cos repeats 
every 360°.

?

?

?

?

?

?

?



Test Your Understanding

Without a calculator, work out the value of each below.

cos 315° = 𝐜𝐨𝐬 𝟒𝟓° =
𝟏

𝟐

sin 420° = 𝐬𝐢𝐧 𝟔𝟎° =
𝟑

𝟐
tan −120° = 𝐭𝐚𝐧 𝟔𝟎° = 𝟑

tan −45° = −𝒕𝒂𝒏 𝟒𝟓° = −𝟏

sin 135° = 𝐬𝐢𝐧 𝟒𝟓° =
𝟏

𝟐

?

?

?

?

?

• sin 𝑥 = sin 180 − 𝑥
• cos 𝑥 = cos 360 − 𝑥
• 𝑠𝑖𝑛, 𝑐𝑜𝑠 repeat every 360°

but 𝑡𝑎𝑛 every 180°



Exercise 10A/B

Pearson Pure Mathematics Year 1/AS
Page 207, 209



Trigonometric Identities

1

cos 𝜃

sin 𝜃
𝜃

Then 𝒕𝒂𝒏 𝜽 =
𝒔𝒊𝒏 𝜽

𝒄𝒐𝒔 𝜽

1

2 Pythagoras gives 
you...

𝒔𝒊𝒏𝟐𝜽 + 𝒄𝒐𝒔𝟐𝜽 = 𝟏

?

?

?

Returning to our point on the 
unit circle…

sin2 𝜃 is a shorthand for sin 𝜃 2. It does NOT mean the 
sin is being squared – this does not make sense as sin is 
a function, and not a quantity that we can square!

?

𝑂

𝑃

You are really uncool if 
you get this reference.



Application of identities #1: Proofs

Prove that 1 − tan 𝜃 sin 𝜃 cos 𝜃 ≡ cos2 𝜃

tan 𝑥 =
sin 𝑥

cos 𝑥
sin2 𝑥 + cos2 𝑥 = 1

Recall that ≡ means ‘equivalent 
to’, and just means the LHS is 
always equal to the RHS for all 
values of 𝜃.
From Chapter 7 (‘Proofs’) we saw 
that usually the best method is to 
manipulate one side (e.g. LHS) 
until we get to the other (RHS).

𝐿𝐻𝑆 = 1 −
sin 𝜃

cos 𝜃
sin 𝜃 cos 𝜃

= 1 −
sin2 𝜃 𝑐𝑜𝑠𝜃

cos 𝜃
= 1 − sin2 𝜃
= cos2 𝜃 = 𝑅𝐻𝑆

?

?
?

Fro Tip #1: Turn any tan’s 
into sin’s and cos’s. 

?



More Examples

Prove that tan 𝜃 +
1

tan 𝜃
≡

1

sin 𝜃 cos 𝜃

Edexcel C2 June 2012 Paper 1 Q16

Fro Tip #2: In any addition/subtraction 
involving at least one fraction (with trig 
functions), always combine algebraically 
into one.

𝐿𝐻𝑆 ≡
sin 𝜃

cos 𝜃
+
cos𝜃

sin 𝜃

≡
sin2 𝜃

sin 𝜃 cos 𝜃
+

cos2 𝜃

sin 𝜃 cos 𝜃

≡
sin2 𝜃 + cos2 𝜃

sin 𝜃 cos 𝜃

≡
1

sin 𝜃 cos 𝜃
≡ 𝑅𝐻𝑆

?

?

?

?

Simplify 5 − 5 sin2 𝜃

Fro Tip #3: Look out for 1 − sin2 𝜃 and 1 − cos2 𝜃.
Students often don’t spot that these can be 
simplified.

≡ 5 1 − sin2 𝜃
≡ 5 cos2 𝜃 ?



Test Your Understanding

Prove that tan2 𝜃 ≡
1

cos2 𝜃
− 1

AQA IGCSE Further Maths Worksheet

𝐿𝐻𝑆 ≡
sin2 𝜃

cos2 𝜃

≡
1 − cos2 𝜃

cos2 𝜃

≡
1

cos2 𝜃
−
cos2 𝜃

cos2 𝜃
≡

1

cos2 𝜃
− 1 ≡ 𝑅𝐻𝑆

Prove that 
tan 𝑥 cos 𝑥

1−cos2 𝑥
≡ 1

𝐿𝐻𝑆 ≡

sin 𝑥
cos 𝑥

cos 𝑥

sin2 𝑥
≡
sin 𝑥

sin 𝑥
≡ 1?

?

Prove that 
cos4 𝜃−sin4 𝜃

cos2 𝜃
≡ 1 − tan2 𝜃

𝐿𝐻𝑆 ≡
cos2 𝜃 + sin2 𝜃 cos2 𝜃 − sin2 𝜃

cos2 𝜃

≡
cos2 𝜃 − sin2 𝜃

cos2 𝜃
≡
cos2 𝜃

cos2 𝜃
−
sin2 𝜃

cos2 𝜃
≡ 1 − tan2 𝜃 ≡ 𝑅𝐻𝑆

?



Exercise 10C

Pearson Pure Mathematics Year 1/AS
Page 211-212

[MAT 2008 1C] The simultaneous 
equations in 𝑥, 𝑦,

cos 𝜃 𝑥 − sin 𝜃 𝑦 = 2
cos 𝜃 𝑥 + sin 𝜃 𝑦 = 1

are solvable:
A) for all values of 𝜃 in range 

0 ≤ 𝜃 < 2𝜋
B) except for one value of 𝜃 in 

range 0 ≤ 𝜃 < 2𝜋
C) except for two values of 𝜃 in 

range 0 ≤ 𝜃 < 2𝜋
D) except for three values of 𝜃 in 

range 0 ≤ 𝜃 < 2𝜋

For convenience let 𝒔 = 𝒔𝒊𝒏𝜽 and 𝒄 = 𝒄𝒐𝒔𝜽. 
As we’d usually do for simultaneous 
equations, we could make coefficients of 𝒙
terms the same:

𝒔𝒄𝒙 − 𝒔𝟐𝒚 = 𝟐𝒔
𝒔𝒄𝒙 + 𝒄𝟐𝒚 = 𝒄

Then subtracting:

𝒔𝟐 + 𝒄𝟐 𝒚 = 𝒄 − 𝟐𝒔

∴ 𝒚 = 𝒄 − 𝟐𝒔
Similarly making 𝒚 terms the same, we yield 
𝒙 = 𝟐𝒄 + 𝒔
𝒙, 𝒚 are defined for every value of 𝜽, so the 
answer is (A). Why might it have not been 

(A)? Suppose 𝒙 =
𝟐 𝒄𝒐𝒔 𝜽+𝒔𝒊𝒏𝜽

𝐬𝐢𝐧 𝜽
. This would not 

be defined whenever 𝒔𝒊𝒏 𝜽 = 𝟎.

Extension:

?



Solving Trigonometric Equations

Reminder of ‘trig laws’:
• sin 𝑥 = sin 180 − 𝑥
• cos 𝑥 = cos 360 − 𝑥
• 𝑠𝑖𝑛, 𝑐𝑜𝑠 repeat every 360°

but 𝑡𝑎𝑛 every 180°

Remember those trigonometric angle laws (on the 
right) earlier this chapter? They’re about to become 
super freakin’ useful!

Solve sin 𝜃 =
1

2
in the interval 0 ≤ 𝜃 ≤ 360°.

𝜃 = sin−1
1

2
= 30°

or 𝜃 = 180° − 30° = 150°

Froculator Note:
When you do 𝑠𝑖𝑛−1, 𝑐𝑜𝑠−1 and 
𝑡𝑎𝑛−1 on a calculator, it gives you 
only one value, known as the 
principal value.

Solve 5 tan 𝜃 = 10 in the interval −180° ≤ 𝜃 < 180°

Fro Tip: Look out for the solution 
range required. −180 ≤ 𝜃 < 180°
is a particularly common one.

tan 𝜃 =
10

5
= 2

𝜃 = tan−1(2) = 63.4° (1𝑑𝑝)
or 𝜃 = 63.4° − 180° = −116.6° 1𝑑𝑝 𝑡𝑎𝑛 repeats every 180°, so can 

add/subtract 180° as we please.

?

?



Slightly Harder Ones…

Solve sin 𝜃 = −
1

2
in the interval 0 ≤ 𝜃 ≤ 360°.

𝜃 = sin−1 −
1

2
= −30°

or 𝜃 = 180° − −30° = 210°
or 𝜃 = −30° + 360° = 330°

This is not in range. In general you should have 
2 solutions per 360° (except when at a peak or 
trough of the trig graph)

Note that we’ve had to use a second law, i.e. 
that 𝑠𝑖𝑛 repeats every 360°.

?

Solve sin 𝜃 = 3 cos 𝜃 in the interval 0 ≤ 𝜃 ≤ 360°.

sin 𝜃

cos 𝜃
= 3

tan 𝜃 = 3

𝜃 = tan−1 3 = 60°

or 𝜃 = 60° + 180° = 240°

Hint: The problem here is that we have 
two different trig functions. Is there 
anything we can divide both sides by so 
we only have one trig function?

?



Test Your Understanding

Solve 2 cos 𝜃 = 3 in the interval 0 ≤ 𝜃 ≤ 360°.

cos 𝜃 =
3

2

𝜃 = cos−1
3

2
= 30°

or 𝜃 = 360° − 30° = 330°

Solve 3 sin 𝜃 = cos 𝜃 in the interval −180° ≤ 𝜃 ≤ 180°.

tan 𝜃 =
1

3

𝜃 = tan−1
1

3
= 30°

or 𝜃 = 30° − 180° = −150°

?

?



Exercise 10D

Pearson Pure Mathematics Year 1/AS
Page 215-216



Froflections: As mentioned before, in general you 
tend to get a pair of values per 360° (for any of 
sin/cos/tan), except for cos𝜃 = ±1 or sin 𝜃 = ±1:

Thus once getting your first pair of values (e.g. using 
sin 180 − 𝜃 or cos(360 − 𝜃) to get the second 
value), keep adding 360° to generate new pairs.

Harder Equations

Harder questions replace the angle 𝜃 with a linear expression.

Solve cos 3𝑥 = −
1

2
in the interval 0 ≤ 𝑥 ≤ 360°.

STEP 1: Adjust the range of 
values for 𝜃 to match the 
expression inside the cos. 

0 ≤ 3𝑥 < 1080°

3𝑥 = cos−1 −
1

2
= 120°

3𝑥 = 120°, 240°, 480°, 600°, 840°, 960°
𝑥 = 40°, 80°, 160°, 200°, 280°, 320°

STEP 2: Immediately after 
applying an inverse trig 
function (and BEFORE dividing 
by 3!), find all solutions up to 
the end of the interval.

STEP 3: Then do final 
manipulation to each value.

?

𝑦 = cos 𝑥

90 𝑥
180 270 360

𝑦



Further Examples

Solve sin(2𝑥 + 30°) =
1

2
in the interval 0 ≤ 𝑥 ≤ 360°.

30° ≤ 2𝑥 + 30° ≤ 750°
2𝑥 + 30° = 45°, 135°, 405°, 495°
2𝑥 = 15°, 105°, 375°, 465°
𝑥 = 7.5°, 52.5°, 187.5°, 232.5°

To get from 𝑥 to 2𝑥 + 30° we 
double and add 30°. So do 
the same to the upper and 
lower bound!?

Solve sin 𝑥 = 2 cos 𝑥 in the interval 0 ≤ 𝑥 < 300°

tan 𝑥 = 2
𝑥 = tan−1 2 = 63.43°, 243.43°

By dividing both sides by 𝐜𝐨𝐬 𝒙, 
the sin 𝑥 becomes tan 𝑥 and the 
cos 𝑥 disappears, leaving a trig 
equation helpfully only in terms 
of one trig function.

?



Test Your Understanding

Edexcel C2 Jan 2013 Q4

?



Exercise 10E

Pearson Pure Mathematics Year 1/AS
Page 218-219



Quadratics in sin/cos/tan

Solve 5 sin2 𝑥 + 3 sin 𝑥 − 2 = 0 in the interval 0 ≤ 𝑥 ≤ 360°.

We saw that an equation can be ‘quadratic in’ something, e.g. 𝑥 − 2 𝑥 + 1 = 0
is ‘quadratic in 𝑥’, meaning that 𝑥 could be replaced with another variable, 
say 𝑦, to produce a quadratic equation 𝑦2 − 2𝑦 + 1 = 0.

Method 1: Use a substitution.

Let 𝑦 = sin 𝑥
Then 5𝑦2 + 3𝑦 − 2 = 0
5𝑦 − 2 𝑦 + 1 = 0

𝑦 =
2

5
𝑜𝑟 𝑦 = −1

∴ sin 𝑥 =
2

5
𝑜𝑟 sin 𝑥 = −1

𝒙 = 𝟐𝟑. 𝟔°, 𝟏𝟓𝟔. 𝟒°,
𝒐𝒓 𝒙 = 𝟐𝟕𝟎°

Method 2: Factorise without substitution.

This is the same, but we ‘imagine’ sin 𝑥 as a 
single variable and hence factorise 
immediately.

5 sin 𝑥 − 2 sin 𝑥 + 1 = 0

sin 𝑥 =
2

5
𝑜𝑟 sin 𝑥 = −1

𝒙 = 𝟐𝟑. 𝟔°, 𝟏𝟓𝟔. 𝟒°,
𝒐𝒓 𝒙 = 𝟐𝟕𝟎°

Fropinion: I’d definitely advocate Method 2 provided you feel 
confident with it. Method 1 feels clunky.

? ?



More Examples

Solve tan2 𝜃 = 4 in the interval 0 ≤ 𝑥 ≤ 360°.

tan 𝜃 = 2 𝑜𝑟 tan 𝜃 = −2
𝜃 = 63.4°, 243.4°
𝑜𝑟 𝜃 = −63.4°, 116.6°, 296.6°

−63.4° was outside the range so 
we had to add 180° twice.

Missing the negative case would result 
in the loss of multiple marks. Beware!

?

Solve 2 cos2 𝑥 + 9 sin 𝑥 = 3 sin2 𝑥 in the interval −180° ≤ 𝑥 ≤ 180°.

Tip: We have an 
identity involving 𝑠𝑖𝑛2

and 𝑐𝑜𝑠2, so it makes 
sense to change the 
squared one that 
would match all the 
others.

2 1 − sin2 𝑥 + sin 𝑥 = 3 sin2 𝑥
2 − 2 sin2 𝑥 + sin 𝑥 = 3 sin2 𝑥
5 sin2 𝑥 − sin 𝑥 − 2 = 0
5 sin 𝑥 + 1 sin 𝑥 − 2 = 0

sin 𝑥 = −
1

5
𝑜𝑟 sin 𝑥 = 2

𝑥 = −168.5°,−11.5°

?



Test Your Understanding

?
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Extension

[MAT 2010 1C] In the range 0 ≤ 𝑥 < 360°, 
the equation

sin2 𝑥 + 3 sin 𝑥 cos 𝑥 + 2 cos2 𝑥 = 0
Has how many solutions?

There are multiple ways to do this, 
including factorising LHS to 
(𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙)(𝐬𝐢𝐧𝒙 + 𝟐 𝐜𝐨𝐬 𝒙), but 
dividing by 𝐜𝐨𝐬𝟐 𝒙 gives:

𝐭𝐚𝐧𝟐 𝒙 + 𝟑 𝐭𝐚𝐧𝒙 + 𝟐 = 𝟎
𝐭𝐚𝐧 𝒙 + 𝟏 𝐭𝐚𝐧𝒙 + 𝟐 = 𝟎
𝐭𝐚𝐧 𝒙 = −𝟏 𝒐𝒓 𝐭𝐚𝐧 𝒙 = −𝟐

tan always gives a pair of solutions per 
𝟑𝟔𝟎°, so there are 4 solutions.

[MAT 2014 1E] As 𝑥 varies over the 
real numbers, the largest value taken 
by the function 
4 sin2 𝑥 + 4 cos 𝑥 + 1 2 equals 

what?

𝟒 − 𝟒𝐜𝐨𝐬𝟐 𝒙 + 𝟒𝐜𝐨𝐬 𝒙 + 𝟏
𝟐

= −𝟒𝐜𝐨𝐬𝟐 𝒙 + 𝟒𝐜𝐨𝐬 𝒙 + 𝟓
𝟐

= 𝟔 − 𝟏 − 𝟐𝐜𝐨𝐬 𝒙 𝟐 𝟐

We can make 𝐜𝐨𝐬 𝒙 =
𝟏

𝟐
, thus giving 

a maximum value of 𝟔𝟐 = 𝟑𝟔.

1 2

? ?


