

P2 Chapter 12 :: Vectors

jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths

Last modified: 6th September 2018

www.drfrostmaths.com

Everything is **completely free**. Why not register? Register now to interactively practise questions on this topic, including past paper questions and extension questions (including MAT + UKMT). Teachers: you can create student accounts (or students can register themselves), to set work, monitor progress and even create worksheets.

Chapter Overview

This chapter is not hugely long, nor intended to be demanding (relatively speaking!). It's a reminder of how 3D coordinates work (which you may have encountered at GCSE), and extends some of the results you learned in Year 1 vectors from 2D to 3D.

1:: Distance between two points.	2 :: <i>i</i> , <i>j</i> , <i>k</i> notation for vectors
What's the distance between $(1,0,4)$ and $(-3,5,9)$?	$\begin{pmatrix} 1\\ -2\\ 5 \end{pmatrix} \rightarrow i - 2j + 5k$

3:: Magnitude of a 3D vector and using it to find angle between vector and a coordinate axis.

"Find the angles that the vector a = 2i - 3j - k makes with each of the positive coordinate axis."

4:: Solving Geometric Problems

Same as Year 1 but with 3D vectors.

5:: Application to Mechanics

Using F = ma with 3D force/acceleration vectors and understanding distance is the magnitude of the 3D displacement vector, etc.

Note for teachers: All the harder vectors content from C4 has been moved to Further Maths, i.e. no vector equations of straight lines nor dot product nor angles between vectors (except with a coordinate axis).

Distance from the origin and magnitude of a vector

From Year 1 you will be familiar with the magnitude |a| of a vector a being its length. We can see from above that this nicely extends to 3D:

$$\mathscr{N}$$
 The magnitude of a vector $\boldsymbol{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$:
 $|\boldsymbol{a}| = \sqrt{x^2 + y^2 + z^2}$
And the distance of (x, y, z) from the origin is $\sqrt{x^2 + y^2 + z^2}$

Distance between two 3D points

How do we find the distance between P and Q?

The distance between two points is:		
$d = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}$	Δx means "change in x"	

Fro Tip: Because we're squaring, it doesn't matter whether the change is negative or positive.

Test Your Understanding So Far...

[Textbook] Find the distance from the origin to the point P(7,7,7).

[Textbook] The coordinates of A and B are (5,3,-8) and (1,k,-3) respectively. Given that the distance from A to B is $3\sqrt{10}$ units, find the possible values of k.

i, *j* and *k* notation

In 2D you were previously introduced to $\mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ as unit vectors in each of the *x* and *y* directions.

It meant for example that $\binom{8}{-2}$ could be written as 8i - 2j since $8\binom{1}{0} - 2\binom{0}{1} = \binom{8}{-2}$

Unsurprisingly, in 3D:

$$\boldsymbol{i} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \boldsymbol{j} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \boldsymbol{k} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Examples

Find the magnitude of $\mathbf{a} = 2\mathbf{i} - \mathbf{j} + 4\mathbf{k}$ and hence find $\hat{\mathbf{a}}$, the unit vector in the direction of \mathbf{a} .

Angles between vectors and an axis

How could you work out the angle between a vector and the *x*-axis?

?
The angle between
$$a = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 and the *x*-axis is:
 $\cos \theta_x = \frac{x}{|a|}$
and similarly for the *y* and *z* axes.

[Textbook] Find the angles that the vector a = 2i - 3j - k makes with each of the positive coordinate axis.

Test Your Understanding

[Textbook] The points A and B have position vectors $4\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ relative to a fixed origin, O. Find \overrightarrow{AB} and show that $\triangle OAB$ is isosceles.

(a) Find the angle that the vector $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ makes with the *x*-axis. (b) By similarly considering the angle that $\mathbf{b} = \mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ makes with the *x*-axis, determine the area of OAB where $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. (Hint: draw a diagram)

Pearson Pure Mathematics Year 2/AS Pages 341-343

Geometric Problems

For more general problems involving vectors, often drawing a diagram helps!

[Textbook] A, B, C and D are the points (2, -5, -8), (1, -7, -3), (0, 15, -10) and (2, 10, -20)

- (2,19,-20) respectively.
- a. Find \overrightarrow{AB} and \overrightarrow{DC} , giving your answers in the form $p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$.
- b. Show that the lines AB and DC are parallel and that $\overrightarrow{DC} = 2\overrightarrow{AB}$.
- c. Hence describe the quadrilateral *ABCD*.

[Textbook] P, Q and R are the points (4, -9, -3), (7, -7, -7) and (8, -2, 0) respectively. Find the coordinates of the point S so that PQRS forms a parallelogram.

Comparing Coefficients

There are many contexts in maths where we can 'compare coefficients', e.g.

 $3x^2 + 5x \equiv A(x^2 + 1) + Bx + C$ Comparing x^2 terms: 3 = A

We can do the same with vectors:

[Textbook] Given that $3\mathbf{i} + (p+2)\mathbf{j} + 120\mathbf{k} = p\mathbf{i} - q\mathbf{j} + 4pqr\mathbf{k}$, find the values of p, q and r. [Textbook] The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G. Vectors a, b and c are the position vectors of the vertices A, B and Crespectively. Prove that the diagonals OE and BGbisect each other.

The strategy behind this type of question is to find the point of intersection in 2 ways, and compare coefficients. Pearson Pure Mathematics Year 2/AS Pages 346-347

Application to Mechanics

Out of displacement, speed, acceleration, force, mass and time, all but mass and time are vectors. Clearly these can act in 3D space.

Example

[Textbook] A particle of mass 0.5 kg is acted on by three forces.

$$F_{1} = (2i - j + 2k) N$$

$$F_{2} = (-i + 3j - 3k) N$$

$$F_{3} = (4i - 3j - 2k) N$$

- a. Find the resultant force *R* acting on the particle.
- b. Find the acceleration of the particle, giving your answer in the form $(p\mathbf{i} + q\mathbf{j} + r\mathbf{k})$ ms⁻².
- c. Find the magnitude of the acceleration.

Given that the particle starts at rest,

d. Find the distance travelled by the particle in the first 6 seconds of its motion.

Pearson Pure Mathematics Year 2/AS Pages 348-349

The End

