

P2 Chapter 8 :: Parametric Equations

jfrost@tiffin.kingston.sch.uk

www.drfrostmaths.com @DrFrostMaths

Last modified: 11th December 2017

Use of DrFrostMaths for practice

Choose the topics	or select from a scheme of work	Options		
KS2/3/4 KS5	₽ Yr7	Difficulty: auto •		
Pure Mathematics	Yr8	'Auto' difficulty sets at your current level for each selected topic.		
Algebraic Techniques	Yr9			
Coordinate Geometry in the (x,y) plane Differentiation	Yr10Set1-2			
Exponentials and Logarithms	Edexcel A Level (Mech Yr1)			
Geometry Graphs and Functions	Edexcel A Level (P1)			
Composite functions.Definition of function and determining				
values graphically. Discriminant of a guadratic function.		Start >		
	Regi	ster for free at:		
		ster for free at:		
	wwv	v.drfrostmaths.com/homev		
If $f(x) = \frac{x-3}{2-x^2}$, determine $f^{-1}(x)$.	www Pract	v.drfrostmaths.com/homev ise questions by chapter, inclu		
If $f\left(x ight)=rac{x-3}{2x+1}$, determine $f^{-1}\left(x ight)$.	www Pract past	v.drfrostmaths.com/homev ise questions by chapter, inclu paper Edexcel questions and e		
If $f(x)=rac{x-3}{2x+1}$, determine $f^{-1}\left(x ight)$.	www Pract past	v.drfrostmaths.com/homev ise questions by chapter, inclu		
If $f(x)=rac{x-3}{2x+1}$, determine $f^{-1}\left(x ight)$.	www Pract past	v.drfrostmaths.com/homev ise questions by chapter, inclu paper Edexcel questions and e		
If $f(x) = rac{x-3}{2x+1}$, determine $f^{-1}(x)$.	WWV Pract past quest	v.drfrostmaths.com/homev ise questions by chapter, inclu paper Edexcel questions and e		

Chapter Overview

This chapter is very similar to the trigonometry chapters in Year 1. The only difference is that new trig functions: *sec*, *cosec* and *cot*, are introduced.

1:: Converting from parametric to Cartesian form.

If $x = 2 \cos t + 1$ and $y = 3 \sin t$, find a Cartesian equations connecting x and y.

2:: Sketching parametric curves.

Sketch the curve with parametric equations x = 2t and $y = \frac{5}{t}$.

3:: Finding points of intersection.

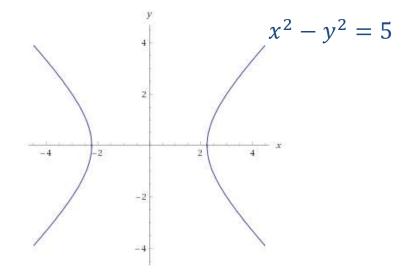
Curve C_1 has the parametric equations $x = t^2$ and y = 4t. The curve C_2 has the Cartesian equation x + y + 4 = 0. The two curves intersect at A. Find the coordinates of A.

4:: Modelling

A plane's position at time *t* seconds after take-off can be modelled with the parametric equations: $x = (v \cos \theta)t$ m, $y = (v \sin \theta)t$ m, t > 0...

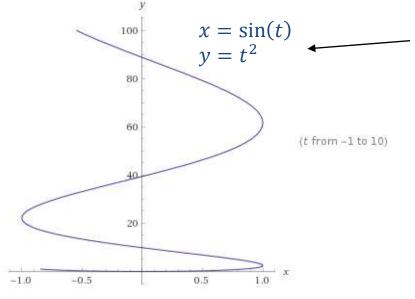
Teacher Note: There is no change in this chapter relative to the old pre-2017 syllabus.

What are they and what is the point?



Typically, with two variables x and y, we can relate the two by a single equation involving just x and y. This is known as a <u>Cartesian equation</u>.

The line shows all points (x, y) which satisfy the Cartesian equation.



However, in Mechanics for example, we might want each of the x and y values to be some function of time t, as per this example.

This would allow us to express the position of a particle at time t as the vector:

 $\binom{\sin t}{t^2}$

These are known as **parametric equations**, because each of x and y are defined in terms of some other variable, known as the parameter (in this case t).

Converting parametric to Cartesian

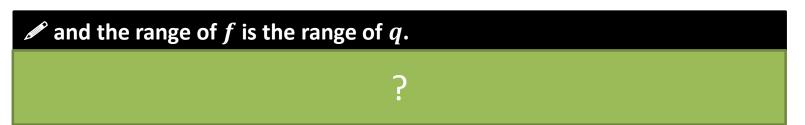
How could we convert these parametric equations into a single Cartesian one?

$$x = 2t$$
, $y = t^2$, $-3 < t < 3$

?

What is the domain of the function?

If x = p(t) and y = q(t) can be written as y = f(x), then the domain of f is the range of p...?



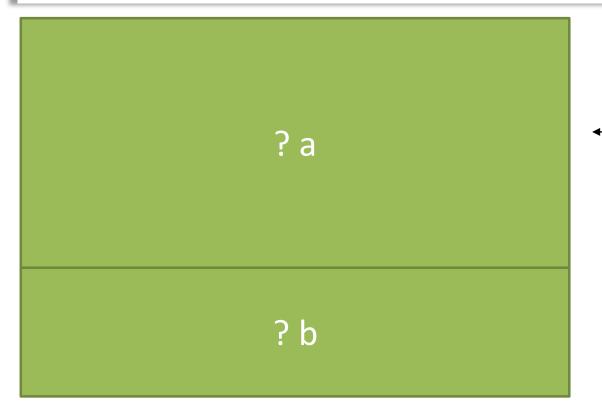
Further Example

[Textbook] A curve has the parameter equations

$$x = \ln(t+3), \qquad y = \frac{1}{t+5}, \qquad t > -2$$

a) Find a Cartesian equation of the curve of the form y = f(x), x > k, where k is a constant to be found.

b) Write down the range of f(x).



A common strategy for domain/range questions is to consider what happens are the boundary value (in this case -2), then since t > -2, consider what happens as tincreases.

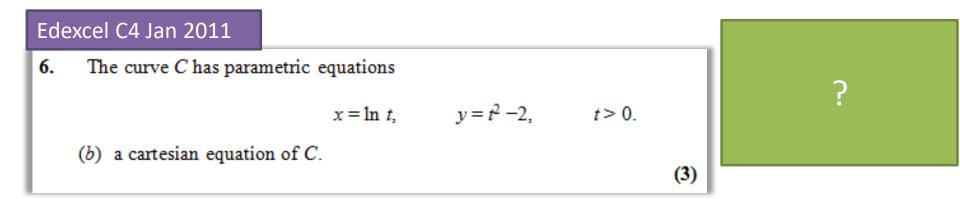
Test Your Understanding

Edexcel C4 Jan 2008 Q7

The curve C has parametric equations

$$x = \ln (t+2), \quad y = \frac{1}{(t+1)}, \quad t > -1.$$

(c) Find a cartesian equation of the curve C, in the form y = f(x). (4)



Pearson Pure Mathematics Year 2/AS Pages 200-202

...when you have trig identities

When we have trig functions we have to use identities to find the Cartesian equation. Generally we use $\sin^2 t + \cos^2 t \equiv 1$ or $1 + \tan^2 t \equiv \sec^2 t$

[Textbook] A curve has the parametric sequences $x = \sin t + 2$, $y = \cos t - 3$, $t \in \mathbb{R}$.

- a) Find a Cartesian equation for the curve.
- b) Hence sketch the curve.

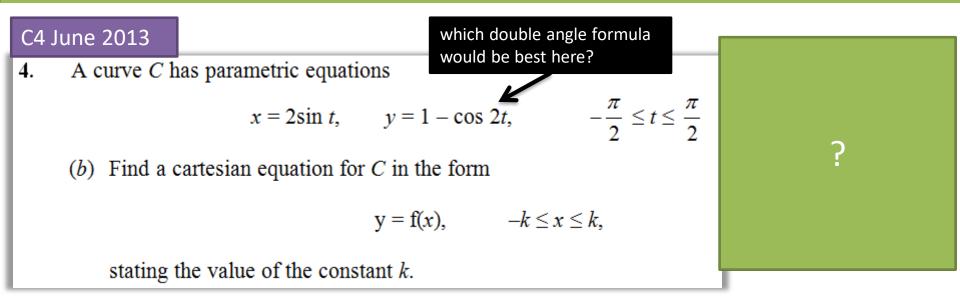
[Textbook] A curve is defined by the parametric equations

$$x = \sin t$$
, $y = \sin 2t$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$

a) Find a Cartesian equation of the curve in the form y = f(x), $-k \le x \le k$, stating the value of the constant k.

b) Write down the range of f(x).

Test Your Understanding



[Textbook] A curve *C* has parametric equations

 $x = \cot t + 2$, $y = \csc^2 t - 2$, $0 < t < \pi$

- a) Find the equation of the curve in the form y = f(x) and state the domain of x for which the curve is defined.
- b) Hence, sketch the curve.

? a

Exercise 8B

Pearson Pure Mathematics Year 2/AS Pages 204-206

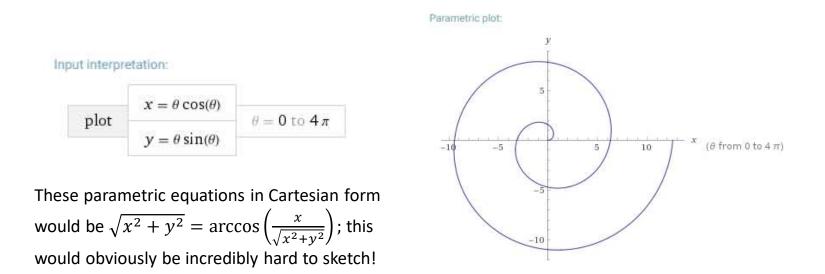
Further Exam Practice

C4 June 2012 Q6?Figure 2 shows a sketch of the curve C with parametric equations
 $x = \sqrt{3} \sin 2t$, $y = 4 \cos^2 t$, $0 \le t \le \pi$.?(c) Find a cartesian equation of C.(3)

Sketching Parametric Curves

We saw that one strategy for sketching parametric curves is to convert into a Cartesian equation, and hope this is a form we recognise (e.g. quadratic or equation of circle) to appropriately sketch.

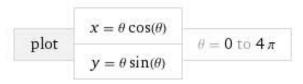
However, some parametric equations can't easily be turned into Cartesian form:



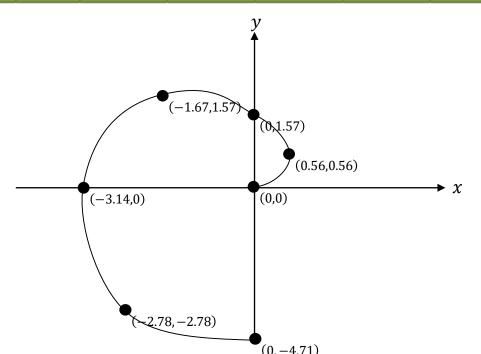
Instead we can try different values of t and determine the point (x, y) for each value to get a sequence of points...

Sketching Parametric Curves

Input interpretation:

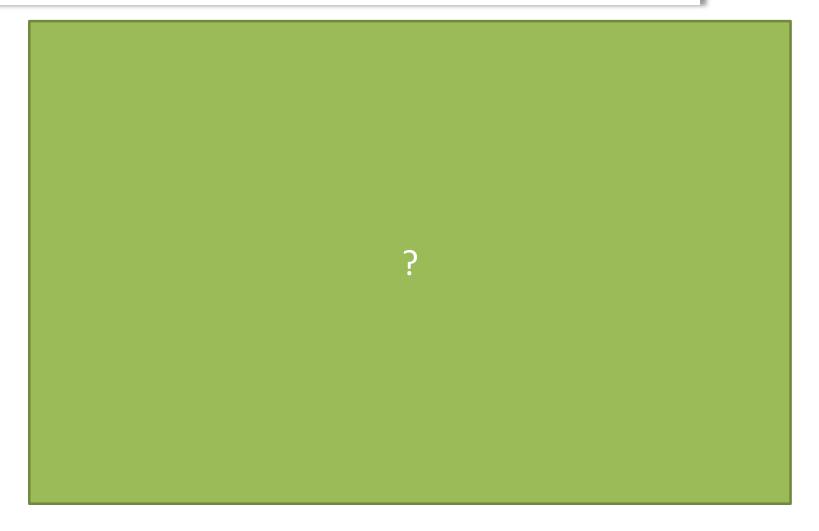


θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3}{4}\pi$	π	$\frac{5}{4}\pi$	$\frac{3}{2}\pi$	$\frac{7}{4}\pi$	2π
x	С	2	2	2	2	2	2	С	2
у	:		•	:	:	:	:	:	:



Test Your Understanding

[Textbook] Draw the curve given by the parametric equations x = 2t, $y = t^2$, for $-1 \le t \le 5$.



Exercise 8C

Pearson Pure Mathematics Year 2/AS Pages 207-208

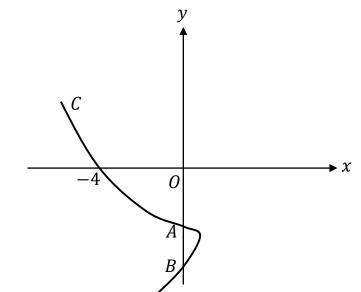
(This exercise could probably be skipped for classes in a rush)

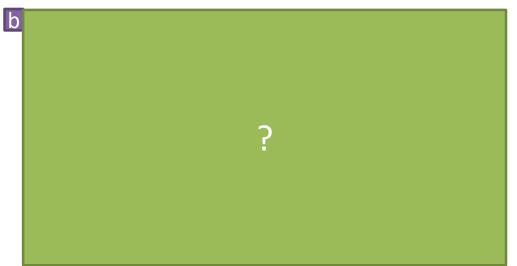
Points of Intersection

We can find where a parametric curve crosses a particular axis or where curves cross each other. v

The key is to first find the value of the parameter *t*.

[Textbook] The diagram shows a curve *C* with parametric equations $x = at^2 + t$, $y = a(t^3 + 8)$, $t \in \mathbb{R}$, where *a* is a non-zero constant. Given that *C* passes through the point (-4,0), a) find the value of *a*. b) find the coordinates of the points *A* and *B* where the curve crosses the *y*-axis.





Points of Intersection

[Textbook] A curve is given parametrically by the equations $x = t^2$, y = 4t. The line x + y + 4 = 0 meets the curve at A. Find the coordinates of A.

$$x + y + 4 = 0$$

$$\therefore t^{2} + 4t + 4 = 0$$

$$(t + 2)^{2} = 0 \quad \therefore \quad t = -2$$

$$\therefore x = (-2)^{2} = 4$$

$$y = 4(-2) = -8$$

$$A(4, -8)$$

Whenever you want to solve a Cartesian equation and pair of parametric equations simultaneously, substitute the parametric equations into the Cartesian one.

[Textbook] The diagram shows a curve C with parametric equations

$$x = \cos t + \sin t$$
, $y = \left(t - \frac{\pi}{6}\right)^2$, $-\frac{\pi}{2} < t < \frac{4\pi}{3}$

a) Find the point where the curve intersects the line $y = \pi^2$. b) Find the coordinates of the points A and B where the curve cuts the y-axis.

Test Your Understanding

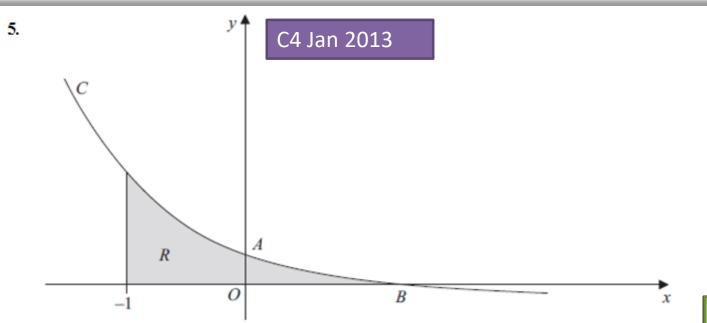


Figure 2 shows a sketch of part of the curve C with parametric equations

$$x = 1 - \frac{1}{2}t$$
, $y = 2^t - 1$.

The curve crosses the y-axis at the point A and crosses the x-axis at the point B.

- (a) Show that A has coordinates (0, 3).
- (b) Find the x-coordinate of the point B.

a ? (2) b ? Pearson Pure Mathematics Year 2/AS Pages 211-213

Modelling

As we saw at the start of this chapter, parametric equations are frequently used in mechanics, particularly where the (x, y) position (the Cartesian variables) depends on time t (the parameter).

[Textbook] A plane's position at time *t* seconds after take-off can be modelled with the following parametric equations:

 $x = (v \cos \theta)t$ m, $y = (v \sin \theta)t$ m, t > 0

where v is the speed of the plane, θ is the angle of elevation of its path, x is the horizontal distance travelled and y is the vertical distance travelled, relative to a fixed origin.

When the plane has travelled 600m horizontally, it has climbed 120m.

a. find the angle of elevation, θ .

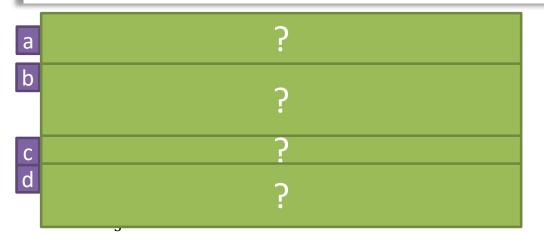
Given that the plane's speed is 50 m s⁻¹,

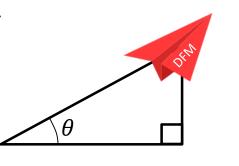
b. find the parametric equations for the plane's motion.

c. find the vertical height of the plane after 10 seconds.

d. show that the plane's motion is a straight line.

e. explain why the domain of t, t > 0, is not realistic.





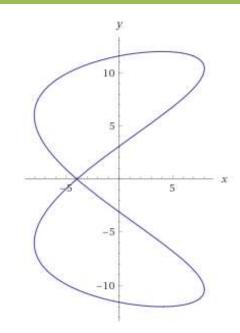
Further Example

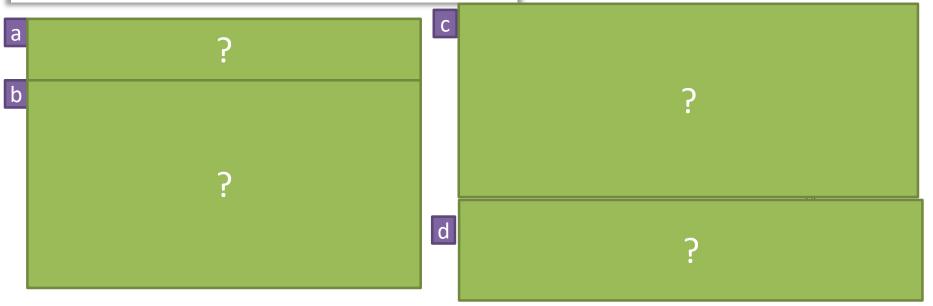
[Textbook] The motion of a figure skater relative to a fixed origin, O, at time t minutes is modelled using the parametric equations

$$x = 8\cos 20t$$
, $y = 12\sin\left(10t - \frac{\pi}{3}\right)$, $t \ge 0$

where x and y are measured in metres.

- a) Find the coordinates of the figure skater at the beginning of his motion.
- b) Find the coordinates of the point where the figure skater intersects his own path.
- c) Find the coordinates of the points where the path of the figure skater crosses the *y*-axis.
- d) Determine how long it takes the figure skater to complete one complete figure-of-eight motion.

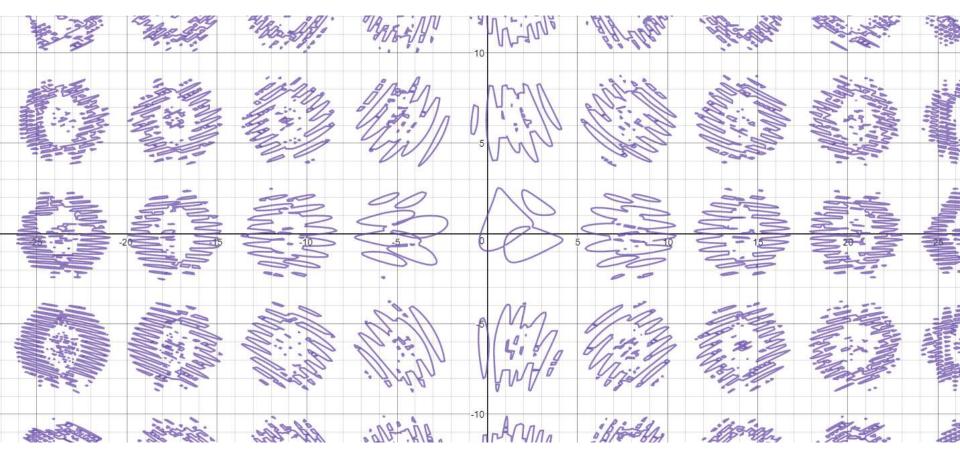




Pearson Pure Mathematics Year 2/AS Pages 218-220

Just For Fun...

$\sin(\sin(x) + \cos(y)) = \cos(\sin(xy) + \cos(x))$



(Yes, I realise this is a Cartesian equation, not parametric ones – but it looked pretty!)