Lower 6 Chapter 8 Binomial Expansion

Chapter Overview

- 1. Pascal's Triangle
- 2. Factorial Notation
- 3. Binomial Expansion
- 4. Using Expansions for Estimation

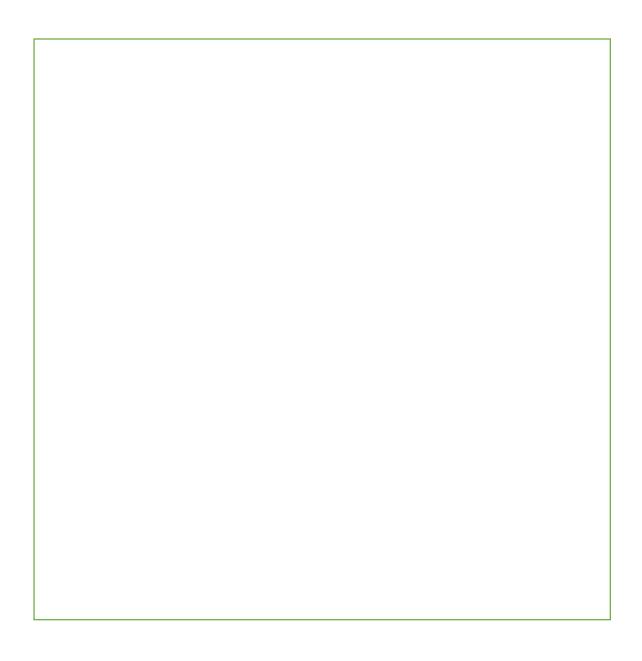
4	4.1	Understand and use the	Use of Pascal's triangle.
Sequences and series		binomial expansion of $(a+bx)^n$ for positive integer n ; the notations $n!$ and nC_r link to binomial probabilities.	Relation between binomial coefficients. Also be aware of alternative notation such as $\binom{n}{r}$ and nC_r

Pascal's Triangle:

Starter

- a) Expand $(a + b)^0$
- b) Expand $(a + b)^1$
- c) Expand $(a + b)^2$
- d) Expand $(a + b)^3$
- e) Expand $(a + b)^4$

What do you notice about the powers of a and b?



Example

Find the expansion of $(2 + 3x)^4$

Example

Find
$$(1 - 2x)^3 =$$

Finding a single term example:

The coefficient of x^2 in the expansion of $(2 - cx)^5$ is 720. Find the possible value(s) of the constant c.

(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$(2 + kx)^7$$

where k is a constant. Give each term in its simplest form.

(4)

Given that the coefficient of x^2 is 6 times the coefficient of x,

(b) find the value of k.

(2)

Extension

[MAT 2009 1J]

The number of pairs of positive integers x, y which solve the equation:

$$x^3 + 6x^2y + 12xy^2 + 8y^3 = 2^{30}$$

is:

- A) 0
- B) 2⁶
- C) $2^9 1$
- D) $2^{10} + 2$

Exercise 8A Page 161

Factorial Notation

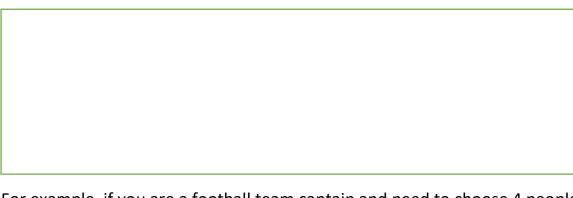
Notation:		

For example, suppose you had three letters, A, B and C, and wanted to arrange them in a line to form a 'word', e.g. ACB or BAC.

- There are 3 choices for the first letter.
- There are then 2 choices left for the second letter.
- There is then only 1 choice left for the last letter.

There are therefore $3 \times 2 \times 1 = 3! = 6$ possible combinations.

Your calculator can calculate a factorial using the x! button.



For example, if you are a football team captain and need to choose 4 people from amongst 10 in your class, there are $\binom{10}{4}=\frac{10!}{4!6!}=210$ possible selections.

(Note: the $\binom{10}{4}$ notation is preferable to 10C4)

Use the nCr button on your calculator (your calculator input should display "10C4")

Examples:

Calculate the value of the following. You may use the factorial button, but not the nCr button.

a) 5!

b) $\binom{5}{3}$

c) 0!

d) $\binom{20}{1}$

e) $\binom{20}{0}$

f) $\binom{20}{2}$

g) $\binom{20}{2}$

g) $\binom{20}{18}$

<u>Binomia</u>	al Expans	<u>sion</u>		

Example

Find the first 4 terms in the expansion of $(3x + 1)^{10}$, in ascending powers of x.

Find the first 3 terms in the expansion of $\left(2 - \frac{1}{3}x\right)^7$, in ascending powers of x.

Extension

1. [AEA 2013 Q1a] In the binomial expansion of $\left(1+\frac{12n}{5}x\right)^n$ the coefficients of x^2 and x^3 are equal and non-zero.

Find the possible values of n.

2. [STEP I 2010 Q5a] By considering the expansion of $(1+x)^n$, where n is a positive integer, or otherwise, show that:

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$$

Finding a Single Term in the Expansion

Expression	Power of x in term wanted.	Term in expansion	
$(a+x)^{10}$	3		
$(2x-1)^{75}$	50		
$(3-x)^{12}$	7		
$(3x+4)^{16}$	3		

Example

The coefficient of x^4 in the expansion of $(1 + qx)^{10}$ is 3360. Find the possible value(s) of the constant q.

In the expansion of $(1 + ax)^{10}$, where a is a non-zero constant the coefficient of x^3 is double the coefficient of x^2 . Find the value of a.

Extension

- 1. MAT 2014 1G] Let n be a positive integer. The coefficient of x^3y^5 in the expansion of $(1 + xy + y^2)^n$ equals:
- A) n
- B) 2^n
- c) $\binom{n}{3} \binom{n}{5}$
- D) $4 \binom{n}{4}$
- E) $\binom{n}{8}$
- 2. [STEP I 2013 Q6] By considering the coefficient of x^r in the series for $(1+x)(1+x)^n$, or otherwise, obtain the following relation between binomial coefficients:

$$\binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r}$$

Using Expansions for Estimating

Example

(a) Find the first 4 terms of the binomial expansion, in ascending powers of x, of

$$\left(1+\frac{x}{4}\right)^8$$

giving each term in its simplest form.

(4)

(b) Use your expansion to estimate the value of (1.025)⁸, giving your answer to 4 decimal places.

(3)

- (a) Find the first 4 terms of the expansion of $\left(1+\frac{x}{2}\right)^{10}$ in ascending powers of x, giving each term in its simplest form.
- (b) Use your expansion to estimate the value of (1.005)¹⁰, giving your answer to 5 decimal places.
 (3)

Exercise 8E Page 168