

P2 Chapter 10 :: Numerical Methods

jfrost@tiffin.kingston.sch.uk

www.drfrostmaths.com @DrFrostMaths

Last modified: 6th September 2018

www.drfrostmaths.com

Everything is **completely free**. Why not register? Register now to interactively practise questions on this topic, including past paper questions and extension questions (including MAT + UKMT). Teachers: you can create student accounts (or students can register themselves), to set work, monitor progress and even create worksheets.

Chapter Overview

In the GCSE9-1 syllabus you covered 'iteration', which allowed you to find successfully better approximations to the solutions of an equation. We'll revisit this, but also see a more powerful method for approximating solutions.

1:: Locating Roots

What it means to find the root of an equation and when we can be sure a root lies in a stated range.

"Show that $f(x) = x^3 - 4x^2 + 3x + 1$ has a root between x = 1.4 and x = 1.5".

2:: Using iteration to approximate roots to f(x) = 0[Jan 2010] 2. $f(x) = x^3 + 2x^2 - 3x - 11$ (a) Show that f(x) = 0 can be rearranged as (2) $x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \quad x \neq -2.$ The equation f(x) = 0 has one positive root α . The iterative formula $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$ is used to find an approximation to α . (b) Taking $x_1 = 0$, find, to 3 decimal places, the values of x_2, x_3 and x_4 . (3)

3:: The Newton-Raphson Method

A numerical method that tends to converge to (i.e. approach) the root faster, by **following the tangent of the graph**.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Notes for teachers: Most of the chapter is covered in GCSE9-1 syllabus (and was in old C3). In addition to this:

- Newton-Raphson method (in old FP1)
- Staircase and cobweb diagrams (in the very old P modules!)
- How to prove a root is correct to a given accuracy (old C3).

Why do we need numerical methods?

Finding the root of a function f(x) is to:

Terminology Pedantry: We often say "Find the roots of $x^2 + x = 0$ ", i.e. an **equation** in the form f(x) = 0, which really means "Find the roots of the function f(x) where $f(x) = x^2 + x$ ". But we wouldn't say "Find the roots of $x^2 - x = 6$ ", but "Find the solutions of...". So to find roots is to find the x such that the 'output', or one side of the equation, is 0.

However, for some functions, the 'exact' root is either complicated and difficult to calculate:

$$x^3 + 2x^2 - 3x + 4 = 0$$
 ?

or there's no 'algebraic' expression at all! (involving roots, logs, sin, cos, etc.)

 $x - \cos(x) = 0$ Provide the set of the set o

Proving a solution lies in a range

Show that $f(x) = e^x + 2x - 3$ has a root between x = 0.5 and x = 0.6

If the y value goes from negative to positive or vice versa, then clearly the y values must pass 0 somewhere in between. **Bro Exam Tip:** In the mark scheme they're looking for:

- Finding the function output for the two values.
- Referring to a 'change in sign'.

...but only if the function is continuous

...and no sign change doesn't mean there isn't a root

Beware! Just because there isn't a sign change, doesn't mean there's no root in that interval.

The sign change method fails to detect a root if there were an **even number of roots** in that interval.

Proving a solution to a given accuracy

Edexcel C3 Jan 2013

 $g(x) = e^{x-1} + x - 6$

The root of g(x) = 0 is α .

(c) By choosing a suitable interval, show that $\alpha = 2.307$ correct to 3 decimal places.

(3)

Thinking back to lower school, if the root 2.307 is correct to 3dp, what's the smallest and greatest value it could be?

Smallest: Greatest:

If there was a sign change between x = 2.3065 and x = 2.3075, then we know $2.3065 < \alpha < 2.3075$. But if the value is in this range, then we know it is 2.307 to 3 decimal places!

? What do we write in exam...

Example

[Textbook] (a) Using the same axes, sketch the graphs of $y = \ln x$ and $y = \frac{1}{x}$. Explain how your diagrams shows that the function $y = \ln(x) - \frac{1}{x}$ has only one root. (b) Show that this root lies in the interval 1.7 < x < 1.8(c) Given that the root of f(x) is α , show that $\alpha = 1.763$ correct to 3 decimal places.

Pearson Pure Mathematics Year 2/AS Pages 276-277

(Classes pressed for time may wish to skip this exercise)

Using iteration to approximate a root

Edexcel C3 Jan 2013

 $g(x) = e^{x-1} + x - 6$

(a) Show that the equation g(x) = 0 can be written as

$$x = \ln(6 - x) + 1, \qquad x < 6$$

The root of g(x) = 0 is α .

The iterative formula

$$x_{n+1} = \ln (6 - x_n) + 1, \quad x_0 = 2$$

is used to find an approximate value for α .

(b) Calculate the values of x_1 , x_2 and x_3 to 4 decimal places.

(3)

(3)

(2)

(c) By choosing a suitable interval, show that $\alpha = 2.307$ correct to 3 decimal places.

To solve f(x) = 0 by an iterative method, rearrange into a form x = g(x) and use the iterative formula $x_{n+1} = g(x_n)$

We'll see why it works later.

Fro Tip: The difficulty is that there's multiple choices of *x* to isolate on one side of the equation. Therefore use the target

equation to give clues for

how to rearrange.

Using iteration to approximate a root

Edexcel C3 Jan 2013

 $g(x) = e^{x-1} + x - 6$

(a) Show that the equation g(x) = 0 can be written as

$$x = \ln(6 - x) + 1, \quad x < 6.$$

The root of g(x) = 0 is α .

The iterative formula

$$x_{n+1} = \ln(6 - x_n) + 1, \quad x_0 = 2$$

is used to find an approximate value for α .

(b) Calculate the values of x_1 , x_2 and x_3 to 4 decimal places.

(3)

(2)

(c) By choosing a suitable interval, show that $\alpha = 2.307$ correct to 3 decimal places. (3)

 x_0, x_1, x_2 represent successively better approximations of the root, where x_0 is the starting value.

Froculator Tip: Initially type x_0 (i.e. 2) onto your calculator. Now just type:

 $\ln(6 - ANS) + 1$

And then spam your = key to get successive iterations.

b

Exam Tip: Show the substitution for x_1 to ensure you get the method mark. But then just write the final value for x_2 and thereafter, as the remaining marks will be 'accuracy' ones.

Does the starting value x_0 matter?

Yes! We'll see why in a bit when we look at staircase and cobweb diagrams.

- If there are a multiple roots, iteration might converge to (i.e. approach) a different root.
- Or we may not converge to a root at all, and **diverge** (i.e. approach infinity).

[Textbook]
$$f(x) = x^3 - 3x^2 - 2x + 5$$

(a) Show that the equation $f(x) = 0$ has a root in the interval $3 < x < 4$.
(b) Use the iterative formula $x_{n+1} = \sqrt{\frac{x_n^3 - 2x_n + 5}{3}}$ to calculate the values of x_1, x_2 and x_3 , giving your answers to 4 decimal places, and taking:
(i) $x_0 = 1.5$ (ii) $x_0 = 4$

Test Your Understanding

Edexcel C3 June 2012 Q2

 $f(x) = x^3 + 3x^2 + 4x - 12$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \quad x \neq -3.$$
 (3)

The equation $x^3 + 3x^2 + 4x - 12 = 0$ has a single root which is between 1 and 2.

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{4(3-x_n)}{(3+x_n)}\right)}, \quad n \ge 0,$$

with $x_0 = 1$ to find, to 2 decimal places, the value of x_1 , x_2 and x_3 .

The root of f(x) = 0 is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.272$ to 3 decimal places.

(3)

(3)

Warning: Any particular mark scheme gives what is <u>minimally</u> acceptable. So you should use the full wording earlier to avoid the risk of mark loss.

Why does this method work?

Solve
$$x^2 - x - 1 = 0$$

Recall we put in the form x = g(x): in this case $x = \sqrt{x+1}$ is one possible rearrangement. We can then use the recurrence $x_{n+1} = \sqrt{x_n+1}$. Why does this recurrence work?

Cobweb Diagrams

Solve
$$x^2 - x - 1 = 0$$

And when iteration fails...

Solve
$$x^2 - x - 1 = 0$$

But again, we could have rearranged differently! $x = x^2 - 1$ Therefore we use the recurrence $x_{n+1} = x_n^2 - 1$. What happens this time?

Test Your Understanding

$$f(x) = x^2 - 8x + 4$$

(a) Show that the root of the equation f(x) = 0 can be written as $x = \sqrt{8x - 4}$

(b) Using the iterative formula $x_{n+1} = \sqrt{8x_n - 4}$, and starting with $x_0 = 1$, draw a staircase diagram, indicating x_0, x_1, x_2 on your x-axis, as well as the root α .

Pearson Pure Mathematics Year 2/AS Pages 280-282

The Newton-Raphson Process

The Newton-Raphson Process

A nice animation...

Example

Returning to our original example: $x = \cos(x)$, say letting $x_0 = 0.5$ (*Note: Recall that differentiation assumes radians*)

Quickfire Questions

Using the Newton-Raphson process, state the recurrence relation for the following functions:

Example Exam Question

Edexcel FP1 June 2013(R) Q3c

$$f(x) = \frac{1}{2}x^4 - x^3 + x - 3$$

...

The equation f(x) = 0 has a root β in the interval [-2, -1].

(c) Taking -1.5 as a first approximation to β, apply the Newton-Raphson process once to f(x) to obtain a second approximation to β.
Give your answer to 2 decimal places.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Test Your Understanding

Edexcel FP1 Jan 2010 Q2c

$$f(x) = 3x^2 - \frac{11}{x^2}.$$

(c) Taking 1.4 as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to obtain a second approximation to α , giving your answer to 3 decimal places.

(5)

When does Newton-Raphson fail?

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

If the starting value x_0 was the stationary point, then $f'(x_0) = 0$, resulting in a division by 0 in the above formula.

Graphically, it is because the tangent will never reach the x-axis.

Newton-Raphson also suffers from the same drawbacks as solving by iteration, in that it's possible for the values of x_i to **diverge**.

In this example, the x_i oscillate either side of 0, but gradually getting further away from $\alpha = 0$. Pearson Pure Mathematics Year 2/AS Pages 284-285

Application to Modelling

[Textbook] The price of a car in £s, x years after purchase, is modelled by the function $f(x) = 15\ 000\ (0.85)^x - 1000\ \sin x$, x > 0

- (a) Use the model to find the value, to the nearest hundred £s, of the car 10 years after purchase.
- (b) Show that f(x) has a root between 19 and 20.
- (c) Find f'(x)
- (d) Taking 19.5 as a first approximation, apply the Newton-Raphson method once to f(x) to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.
- (e) Criticise this model with respect to the value of the car as it gets older.

а	?	d
b	?	
С	?	

Pearson Pure Mathematics Year 2/AS Pages 287-289