Solving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose products is ac.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

$5x^2 = 15x$	1 Rearrange the equation so that all of
$5x^2 - 15x = 0$	equation and it is equal to zero. Do not divide both sides by x as this
	would lose the solution $x = 0$.
5x(x-3) = 0	2 Factorise the quadratic equation.
	5x is a common factor.
So $5x = 0$ or $(x - 3) = 0$	3 When two values multiply to make
	zero, at least one of the values must
	be zero.
Therefore $x = 0$ or $x = 3$	4 Solve these two equations.

Example 2 Solve $x^2 + 7x + 12 = 0$

$x^2 + 7x + 12 = 0$	1 Factorise the quadratic equation.
b = 7, ac = 12	Work out the two factors of $ac = 12$ which add to give you $b = 7$. (4 and 3)
$x^2 + 4x + 3x + 12 = 0$	2 Rewrite the <i>b</i> term $(7x)$ using these two factors.
x(x+4) + 3(x+4) = 0	3 Factorise the first two terms and the last two terms.
(x+4)(x+3) = 0	4 $(x+4)$ is a factor of both terms.
So $(x + 4) = 0$ or $(x + 3) = 0$	5 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = -4$ or $x = -3$	6 Solve these two equations.

Example 3 Solve $9x^2 - 16 = 0$

$9x^2 - 16 = 0$ (3x + 4)(3x - 4) = 0	1 Factorise the quadratic equation. This is the difference of two squares
So $(3x + 4) = 0$ or $(3x - 4) = 0$	 as the two terms are (3x)² and (4)². When two values multiply to make zero, at least one of the values must
$x = -\frac{4}{3}$ or $x = \frac{4}{3}$	be zero.3 Solve these two equations.

Example 4 Solve $2x^2 - 5x - 12 = 0$

b = -5, ac = -24	1 Factorise the quadratic equation. Work out the two factors of $ac = -24$ which add to give you $b = -5$. (-8 and 3)
So $2x^2 - 8x + 3x - 12 = 0$	2 Rewrite the <i>b</i> term $(-5x)$ using these two factors.
2x(x-4) + 3(x-4) = 0	3 Factorise the first two terms and the last two terms.
(x-4)(2x+3) = 0	4 $(x-4)$ is a factor of both terms.
So $(x-4) = 0$ or $(2x+3) = 0$	5 When two values multiply to make zero, at least one of the values must
$x = 4 \text{ or } x = -\frac{3}{2}$	be zero.6 Solve these two equations.

Practice

a	$6x^2 + 4x = 0$	b	$28x^2 - 21x = 0$
c	$x^2 + 7x + 10 = 0$	d	$x^2 - 5x + 6 = 0$
e	$x^2 - 3x - 4 = 0$	f	$x^2 + 3x - 10 = 0$
g	$x^2 - 10x + 24 = 0$	h	$x^2 - 36 = 0$
i	$x^2 + 3x - 28 = 0$	j	$x^2 - 6x + 9 = 0$
k	$2x^2 - 7x - 4 = 0$	1	$3x^2 - 13x - 10 = 0$

2 Solve

- **a** $x^2 3x = 10$ **c** $x^2 + 5x = 24$ **e** x(x+2) = 2x + 25
- **g** $x(3x+1) = x^2 + 15$
- **b** $x^2 3 = 2x$ **d** $x^2 - 42 = x$ **f** $x^2 - 30 = 3x - 2$ **h** 3x(x - 1) = 2(x + 1)
- Hint
- Get all terms onto one side of the equation.

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

• Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$.

Examples

Example 5 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$x^2 + 6x + 4 = 0$	1	Write $x^2 + bx + c = 0$ in the form
$(x+3)^2 - 9 + 4 = 0$		$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$
$(x+3)^2 - 5 = 0$	2	Simplify.
$(x+3)^2 = 5$	3	Rearrange the equation to work out
		x. First, add 5 to both sides.
$x + 3 = \pm \sqrt{5}$	4	Square root both sides.
•		Remember that the square root of a
$r = \pm \sqrt{5} - 2$		value gives two answers.
$x = \pm \sqrt{3} = 5$	5	Subtract 3 from both sides to solve
		the equation.
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$	6	Write down both solutions.

Example 6 Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form.

$2x^{2} - 7x + 4 = 0$ $2\left(x^{2} - \frac{7}{2}x\right) + 4 = 0$	1 Before completing the square write $ax^2 + bx + c$ in the form $a\left(x^2 + \frac{b}{a}x\right) + c$
$2\left[\left(x-\frac{7}{4}\right)^2-\left(\frac{7}{4}\right)^2\right]+4=0$	2 Now complete the square by writing $x^2 - \frac{7}{2}x$ in the form $\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$
$2\left(x - \frac{7}{4}\right)^2 - \frac{49}{8} + 4 = 0$ $2\left(x - \frac{7}{4}\right)^2 - \frac{17}{4} = 0$	3 Expand the square brackets.4 Simplify.
	(continued on next page)

$2\left(x-\frac{7}{4}\right)^2 = \frac{17}{8}$	5 Rearrange the equation to work out <i>x</i> . First, add $\frac{17}{8}$ to both sides.
$\left(x - \frac{7}{4}\right)^2 = \frac{17}{16}$	6 Divide both sides by 2.
$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$	7 Square root both sides. Remember that the square root of a value gives two answers.
$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$	8 Add $\frac{7}{4}$ to both sides.
So $x = \frac{7}{4} - \frac{\sqrt{17}}{4}$ or $x = \frac{7}{4} + \frac{\sqrt{17}}{4}$	9 Write down both the solutions.

Practice

3 Solve by completing the square.

a	$x^2 - 4x - 3 = 0$
c	$x^2 + 8x - 5 = 0$

e $2x^2 + 8x - 5 = 0$

b $x^2 - 10x + 4 = 0$ **d** $x^2 - 2x - 6 = 0$ **f** $5x^2 + 3x - 4 = 0$

- 4 Solve by completing the square.
 - **a** (x-4)(x+2) = 5
 - **b** $2x^2 + 6x 7 = 0$
 - **c** $x^2 5x + 3 = 0$

Get all terms onto one side of the equation.

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

• Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{ac}$

$$z = \frac{2a}{2a}$$

- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for *a*, *b* and *c*.

Examples

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$$a = 1, b = 6, c = 4$$

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 1 Identify a, b and c and write down
the formula.
Remember that $-b \pm \sqrt{b^2 - 4ac}$ is
all over $2a$, not just part of it. $x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$ 2 Substitute $a = 1, b = 6, c = 4$ into the
formula. $x = \frac{-6 \pm \sqrt{20}}{2}$ 3 Simplify. The denominator is 2, but
this is only because $a = 1$. The
denominator will not always be 2. $x = \frac{-6 \pm 2\sqrt{5}}{2}$ 4 Simplify $\sqrt{20}$.
 $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$ $x = -3 \pm \sqrt{5}$ 5 Simplify by dividing numerator and
denominator by 2.So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$ 6 Write down both the solutions.

$a = 3, b = -7, c = -2$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> , making sure you get the signs right and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$	2 Substitute $a = 3, b = -7, c = -2$ into the formula.
$x = \frac{7 \pm \sqrt{73}}{6}$ So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$	 3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2. 4 Write down both the solutions.

Example 8 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

Practice

- 5 Solve, giving your solutions in surd form. **a** $3x^2 + 6x + 2 = 0$ **b** $2x^2 - 4x - 7 = 0$
- 6 Solve the equation $x^2 7x + 2 = 0$ Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where *a*, *b* and *c* are integers.
- 7 Solve $10x^2 + 3x + 3 = 5$ Give your solution in surd form.

Hint
Get all terms onto one side of the equation.

Extend

- 8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
 - **a** 4x(x-1) = 3x-2
 - **b** $10 = (x+1)^2$
 - **c** x(3x-1) = 10

Answers

1 a
$$x = 0$$
 or $x = -\frac{2}{3}$
c $x = -5$ or $x = -2$
e $x = -1$ or $x = 4$
g $x = 4$ or $x = 6$
i $x = -7$ or $x = 4$
k $x = -\frac{1}{2}$ or $x = 5$
c $x = -8$ or $x = 3$
b $x = 0$ or $x = \frac{3}{4}$
d $x = 2$ or $x = 3$
f $x = -5$ or $x = 2$
h $x = -5$ or $x = 2$
h $x = -5$ or $x = 2$
h $x = -6$ or $x = 6$
j $x = 3$
h $x = -\frac{2}{3}$ or $x = 5$
b $x = -1$ or $x = 3$
d $x = -6$ or $x = 7$

e
$$x = -5$$
 or $x = 5$
f $x = -4$ or $x = 7$
g $x = -3$ or $x = 2\frac{1}{2}$
h $x = -\frac{1}{3}$ or $x = 2$

3 a
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$
c $x = -4 + \sqrt{21}$ or $x = -4 - \sqrt{21}$
e $x = -2 + \sqrt{6.5}$ or $x = -2 - \sqrt{6.5}$

b
$$x = 5 + \sqrt{21}$$
 or $x = 5 - \sqrt{21}$
d $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$
f $x = \frac{-3 + \sqrt{89}}{10}$ or $x = \frac{-3 - \sqrt{89}}{10}$

b $x = \frac{-3 + \sqrt{23}}{2}$ or $x = \frac{-3 - \sqrt{23}}{2}$

4 a
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$
c $x = \frac{5 + \sqrt{13}}{2}$ or $x = \frac{5 - \sqrt{13}}{2}$

5 a
$$x = -1 + \frac{\sqrt{3}}{3}$$
 or $x = -1 - \frac{\sqrt{3}}{3}$ **b** $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$

6
$$x = \frac{7 + \sqrt{41}}{2}$$
 or $x = \frac{7 - \sqrt{41}}{2}$

7
$$x = \frac{-3 + \sqrt{89}}{20}$$
 or $x = \frac{-3 - \sqrt{89}}{20}$

8 **a**
$$x = \frac{7 + \sqrt{17}}{8}$$
 or $x = \frac{7 - \sqrt{17}}{8}$
b $x = -1 + \sqrt{10}$ or $x = -1 - \sqrt{10}$
c $x = -1\frac{2}{3}$ or $x = 2$

