

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x+q)^2 + r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^2 + 6x - 2$

$$x^{2} + 6x - 2$$

$$= (x + 3)^{2} - 9 - 2$$

$$= (x + 3)^{2} - 11$$
1 Write $x^{2} + bx + c$ in the form
$$\left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$
2 Simplify

Example 2 Write $2x^2 - 5x + 1$ in the form $p(x+q)^2 + r$

$$2x^{2} - 5x + 1$$
1 Before completing the square write $ax^{2} + bx + c$ in the form
$$a\left(x^{2} + \frac{b}{a}x\right) + c$$
2 Now complete the square by writing
$$x^{2} - \frac{5}{2}x \text{ in the form}$$

$$\left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2}$$

$$= 2\left(x - \frac{5}{4}\right)^{2} - \frac{25}{8} + 1$$
3 Expand the square brackets – don't forget to multiply $\left(\frac{5}{4}\right)^{2}$ by the factor of 2
$$= 2\left(x - \frac{5}{4}\right)^{2} - \frac{17}{8}$$
4 Simplify

Practice

1 Write the following quadratic expressions in the form $(x + p)^2 + q$

a
$$x^2 + 4x + 3$$

b
$$x^2 - 10x - 3$$

c
$$x^2 - 8x$$

d
$$x^2 + 6x$$

e
$$x^2 - 2x + 7$$

f
$$x^2 + 3x - 2$$

2 Write the following quadratic expressions in the form $p(x+q)^2 + r$

a
$$2x^2 - 8x - 16$$

b
$$4x^2 - 8x - 16$$

c
$$3x^2 + 12x - 9$$

d
$$2x^2 + 6x - 8$$

3 Complete the square.

a
$$2x^2 + 3x + 6$$

b
$$3x^2 - 2x$$

c
$$5x^2 + 3x$$

d
$$3x^2 + 5x + 3$$

Extend

4 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$.

Answers

1 **a** $(x+2)^2-1$

 \mathbf{c} $(x-4)^2-16$

e $(x-1)^2 + 6$

2 **a** $2(x-2)^2-24$

c $3(x+2)^2-21$

3 **a** $2\left(x+\frac{3}{4}\right)^2+\frac{39}{8}$

 $\mathbf{c} = 5\left(x + \frac{3}{10}\right)^2 - \frac{9}{20}$

4 $(5x+3)^2+3$

b $(x-5)^2-28$

d $(x+3)^2-9$

 $\mathbf{f} = \left(x + \frac{3}{2}\right)^2 - \frac{17}{4}$

b $4(x-1)^2-20$

d $2\left(x+\frac{3}{2}\right)^2-\frac{25}{2}$

b $3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}$

d $3\left(x+\frac{5}{6}\right)^2+\frac{11}{12}$