Lower 6 Chapter 9 Trig Ratios

Chapter Overview

- 1. Sine/ Cosine Rule
- 2. Areas of Triangles
- 3. Trig Graphs
- 4. Proof of Sine/ Cosine Rule

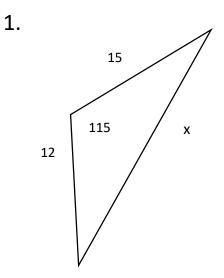
5 Trigonometry	5.1	Understand and use the definitions of sine, cosine and tangent for all arguments;	Use of x and y coordinates of points on the unit circle to give cosine and sine respectively,
		the sine and cosine rules; the area of a triangle in the form $\frac{1}{2}ab\sin C$	including the ambiguous case of the sine rule.

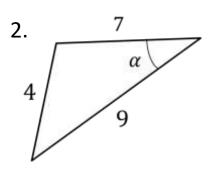
5.3 Understand and use the sine, cosine and tangent functions; their graphs, symmetries and periodicity. Knowledge of graphs of curves with equations such as $y = \sin x$, $y = \cos(x + 30^\circ)$, $y = \tan 2x$ is expected.

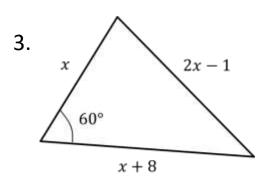
The Cosine Rule

<u>You have</u>	You want	<u>Use</u>
#1: Two angle-side opposite pairs	Missing angle or side in one pair	Sine rule
#2 Two sides known and a missing side opposite a known angle	Remaining side	Cosine rule
#3 All three sides	An angle	Cosine rule
#4 Two sides known and a missing side not opposite known angle	Remaining side	Sine rule twice

Examples:

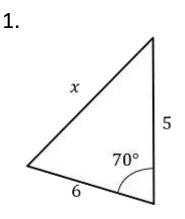




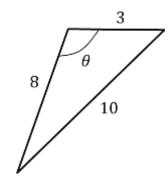


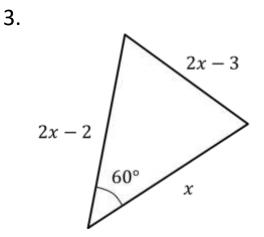
4. Coastguard station *B* is 8 km, on a bearing of 060° , from coastguard station *A*. A ship *C* is 4.8 km on a bearing of 018° , away from *A*. Calculate how far *C* is from *B*.

Test Your understanding



2.

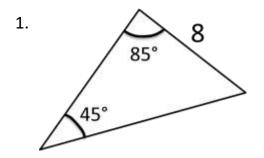


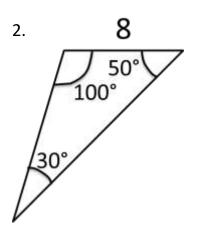


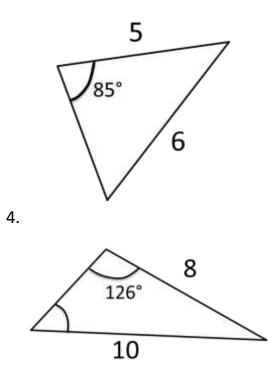
Ex 9A Pg 177

The Sine Rule

Examples:



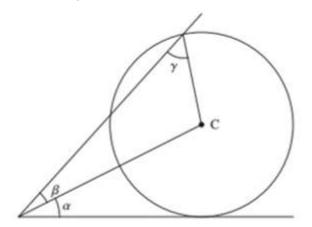




Extension

[MAT 2011 1E]

The circle in the diagram has centre C. Three angles α , β , γ are also indicated.

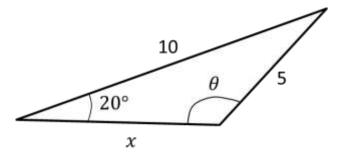


The angles α , β , γ are related by the equation:

- A) $\cos \alpha = \sin(\beta + \gamma)$
- B) $\sin \beta = \sin \alpha \sin \gamma$
- C) $\sin\beta(1-\cos\alpha) = \sin\gamma$
- D) $sin(\alpha + \beta) = cos \gamma sin \alpha$

Example:

Given that the angle θ is obtuse, determine θ and hence determine the length of x.

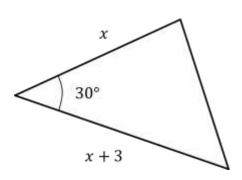


Ex 9C Pg 184

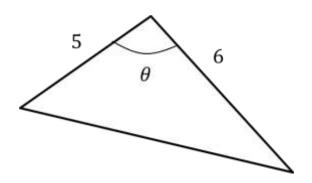
Test your

understanding:

1. The area of this triangle is 10. Determine x.



2. The area of this triangle is also 10. If θ is obtuse, determine θ .



Ex 9D Pg 186

Problem solving with sin/cos rule

Example

The diagram shows the locations of four mobile phone masts in a field, BC = 75 m. CD = 80m, angle $BCD = 55^{\circ}$ and angle $ADC = 140^{\circ}$.

In order that the masts do not interfere with each other, they must be at least 70m apart.

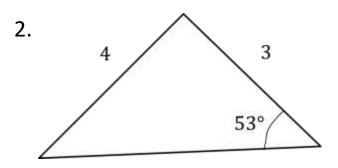
Given that A is the minimum distance from D, find:

- a) The distance A is from B
- b) The angle BAD
- c) The area enclosed by the four masts.

Using the sine rule twice:

understanding

1. y 61° 10



Extension

- 1. [AEA 2009 Q5a] The sides of the triangle ABC have lengths BC = a, AC = b and AB = c, where a < b < c. The sizes of the angles A, B and C form an arithmetic sequence.

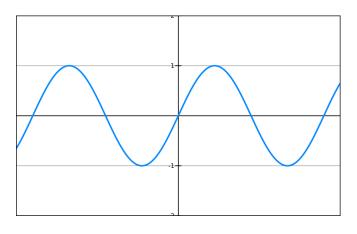
(i) Show that the area of triangle *ABC* is $ac \frac{\sqrt{3}}{4}$. Given that a = 2 and $\sin A = \frac{\sqrt{15}}{5}$, find

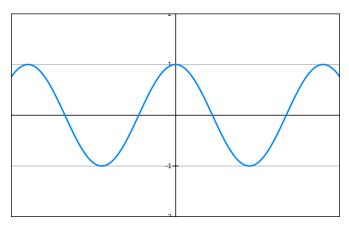
(ii) the value of b,

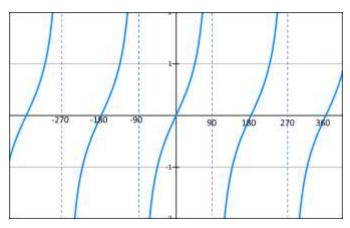
(iii) the value of c.

<u>Trig Graphs</u>

Y = sin x







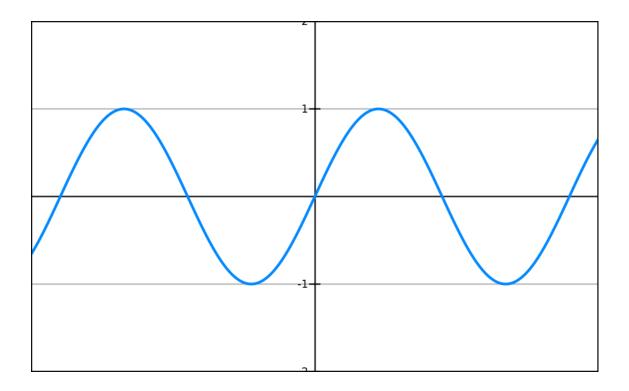
Using trig graphs

Suppose we know that sin(30) = 0.5. By thinking about symmetry in the graph, how could we work out:

Sin(150)

Sin(-30)

Sin(210)

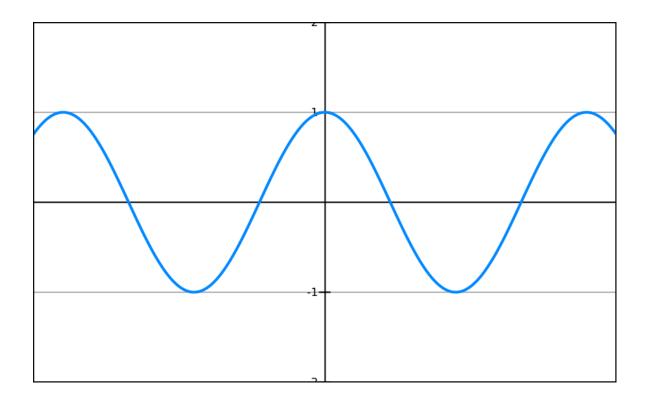


Suppose we know that **cos(60) = 0.5**. By thinking about symmetry in the graph, how could we work out:

Cos(120)

Cos(-60)

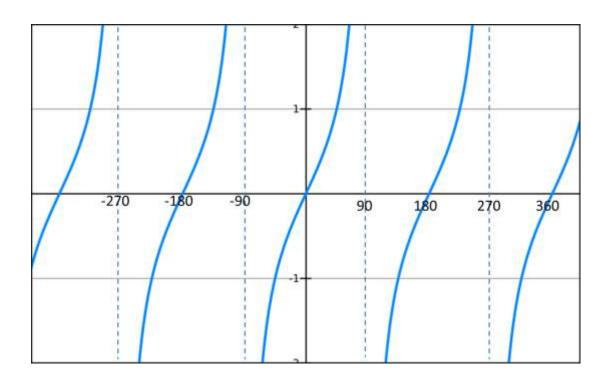
Cos(240)



Suppose we know that $tan(30^\circ) = \frac{1}{\sqrt{3}}$. By thinking about symmetry in the graph, how could we work out:

Tan(-30)

Tan(150)



Transforming Trig Graphs

We can use our knowledge of transforming graphs to transform trig graphs.

Recap

Examples

1. Sketch $y = 4 \sin x$, $0 \le x \le 360^{\circ}$

2. Sketch $y = \cos(x + 45^{\circ}), 0 \le x \le 360^{\circ}$

3. Sketch $y = -\tan x$, $0 \le x \le 360^{\circ}$

4. Sketch
$$y = \sin\left(\frac{x}{2}\right)$$
, $0 \le x \le 360^\circ$

Extension

1.

[MAT 2013 1B] The graph of $y = \sin x$ is reflected first in the line $x = \pi$ and then in the line y = 2. The resulting graph has equation:

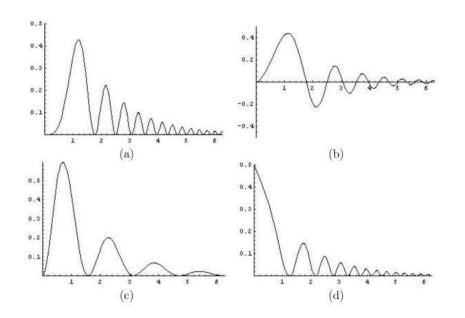
- A) $y = \cos x$
- B) $y = 2 + \sin x$
- C) $y = 4 + \sin x$
- D) $y = 2 \cos x$

2.

[MAT 2011 1D] What fraction of the interval $0 \le x \le 360^\circ$ is one (or both) of the inequalities:

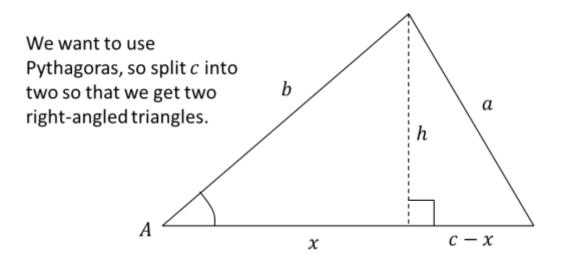
 $\sin x \ge \frac{1}{2}$, $\sin 2x \ge \frac{1}{2}$ true?

MAT 2007 1G] On which of the axes is a sketch of the graph



 $y = 2^{-x} \sin^2(x^2)$

Proof of Cosine Rule



Proof of Sine Rule

The idea is that we can use the common length of $\triangle ACX$ and $\angle XBC$, i.e. h, to connect the two triangles, and therefore connect their angles/length.

а

С

В