Chapter 4

Graphs and Transformations

Chapter Overview

- 1. Polynomial Graphs
 - a. Cubic Graphs
 - b. Quartic Graphs
 - c. Reciprocal Graphs
- 2. Points of Intersection
- 3. Graph Transformations

Understand and use graphs of functions; sketch curves defined by simple equations including polynomials

Graph to include simple cubic and

e.g. sketch the graph with equation
$$y = x^2(2x-1)^2$$

$$y = \frac{a}{x}$$
 and $y = \frac{a}{x^2}$

(including their vertical and horizontal asymptotes)

Interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations.

The asymptotes will be parallel to the axes e.g. the asymptotes of the curve with equation $y = \frac{2}{x+a} + b$ are the lines with equations y = b and x = -a

Understand the effect of simple transformations on the graph of y = f(x), including sketching associated graphs:

$$y = a\mathbf{f}(x), \quad y = \mathbf{f}(x) + a,$$

 $y = \mathbf{f}(x + a), \quad y = \mathbf{f}(ax)$

and combinations of these transformations

Students should be able to find the graphs of y = |f(x)| and y = |f(-x)|, given the graph of y = f(x).

Students should be able to apply a combination of these transformations to any of the functions in the A Level specification (quadratics, cubics, quartics,

reciprocal,
$$\frac{a}{x^2}$$
, $|x|$, $\sin x$, $\cos x$, $\tan x$, e^x

and a^x) and sketch the resulting graph.

Given the graph of y = f(x), students should be able to sketch the graph of, e.g. y = 2f(3x), or y = f(-x) + 1,

and should be able to sketch (for example)

$$y=3+\sin 2x$$
, $y=-\cos\left(x+\frac{\pi}{4}\right)$

Polynomial Graphs

Equation	If $a > 0$	Resulting Shape	If <i>a</i> < 0	Resulting Shape
) " " " " " " " " " " " " " " " " " " "	As $x \to \infty$, $y \to \infty$ As $x \to -\infty$, $y \to \infty$		As $x \to \infty$, $y \to -\infty$ As $x \to -\infty$, $y \to -\infty$	
$y = ax^3 + bx^2 + cx + d$				
$y = ax^4 + bx^3 + cx^2 + dx + e$				
$y = ax^5 + bx^4 + \cdots$				

<u>Cubics</u>

Examples

1. Sketch the curve with equation y = (x - 2)(1 - x)(1 + x)

We consider the shape, the roots and the y – intercept.

2. Sketch the curve with equation $y = x^2(x - 1)$

3. Sketch the curve with equation $y = (2 - x)(x + 1)^2$

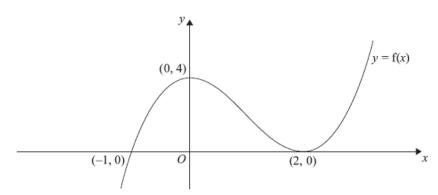
4. Sketch the curve with equation $y = (x - 4)^3$

5. Sketch the curve with equation $y = (x + 1)(x^2 + x + 1)$

Finding the equation: example

The graph shows a sketch of the curve C with equation y = f(x). The curve C passes through the point (-1, 0) and touches the x-axis at the point (2, 0). The curve C has a maximum at the point (0, 4). The equation of the curve C can be written in the form $y = x^3 + ax^2 + bx + c$ where a, b and c are integers.

Calculate the values of a, b, c.



Test Your Understanding:

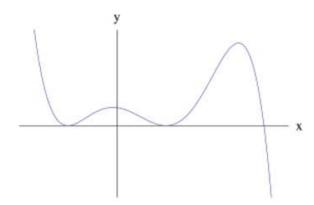
1. Sketch the curve with equation $y = x(x-3)^2$

2. Sketch the curve with equation $y = -(x + 2)^3$

3. A curve has this shape , touches the x axis at 3 and crosses the x axis at -2. Give a suitable equation for this graph.

4. Extension. Sketch the curve with equation $y = 2x^2(x-1)(x+1)^3$

[MAT 2012 1E] Which one of the following equations could possibly have the graph given below?



A)
$$y = (3 - x)^2 (3 + x)^2 (1 - x)$$

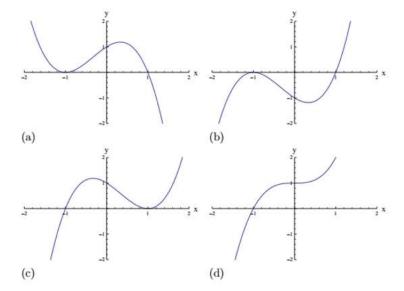
B) $y = -x^2 (x - 9)(x^2 - 3)$
C) $y = (x - 6)(x - 2)^2 (x + 2)^2$
D) $y = (x^2 - 1)^2 (3 - x)$

B)
$$y = -x^2(x-9)(x^2-3)$$

C)
$$y = (x-6)(x-2)^2(x+2)^2$$

D)
$$y = (x^2 - 1)^2(3 - x)^2$$

[MAT 2011 1A] A sketch of the graph $y = x^3 - x^2 - x + 1$ appears on which of the following axis?



Quartics:

Examples:

1. Sketch the curve with equation y = x(x+1)(x-2)(x-3)

2. Sketch the curve with equation $y = (x - 2)^2(x + 1)(3 - x)$

3. Sketch the curve with equation $y = (x + 1)(x - 1)^3$

4. Sketch the curve with equation $y = (x - 2)^4$

Test Your Understanding

1. Sketch the curve with equation $y = x^2(x+1)(x-1)$

2. Sketch the curve with equation $y = -(x+1)(x-3)^3$

Extension:

[STEP I 2012 Q2a]

- a. Sketch $y = x^4 6x^2 + 9$
- b. For what values of b does the equation $y = x^4 6x^2 + b$ have the following number of <u>distinct</u> roots (i) 0, (ii) 1, (iii) 2, (iv) 3, (v) 4.

Reciprocal Graphs

1. Sketch
$$y = \frac{1}{x}$$

2. Sketch
$$y = -\frac{3}{x}$$

3. Sketch
$$y = \frac{3}{x^2}$$

4. Sketch
$$y = -\frac{4}{x^2}$$

5. On the same axes, sketch
$$y = \frac{1}{x}$$
 and $y = \frac{3}{x}$

Points of Intersection

If y = f(x) and y = g(x), then the x values of the points of intersection can be found when f(x) = g(x).

Examples:

1. On the same diagram sketch the curves with equations y=x(x-3) and $y=x^2(1-x)$. Find the coordinates of their points of intersection.

2. On the same diagram sketch the curves with equations $y=x^2(3x-a)$ and $y=\frac{b}{x}$, where a,b are positive constants. State, giving a reason, the number of real solutions to the equation $x^2(3x-a)-\frac{b}{x}=0$

Test Your Understanding

On the same diagram sketch the curves with equations y = x(x-4) and $y = x(x-2)^2$, and hence find the coordinates of any points of intersection.

Extension

1. [MAT 2005 1B]

The equation $(x^2 + 1)^{10} = 2x - x^2 - 2$

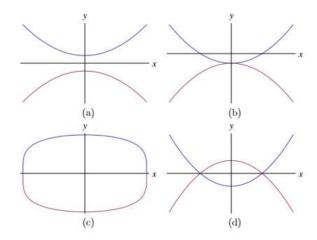
- A) has x = 2 as a solution;
- B) has no real solutions;
- C) has an odd number of real solutions;
- D) has twenty real solutions.

- 2. [MAT 2010 1A] The values of k for which the line y=kx intersects the parabola $y = (x - 1)^2$ are precisely

 - A) $k \le 0$ B) $k \ge -4$
 - C) $k \ge 0$ or $k \le -4$ D) $-4 \le k \le 0$

3. [MAT 2013 1D]

Which of the following sketches is a graph of $x^4 - y^2 = 2y + 1$?



Transformations of Graphs

It is important to understand the effects of simple transformations on the graph y = f(x).

For y = f(x):

Function	Effect
f(x+a)	
f(x-a)	
f(x) + a	
f(x) - a	
f(ax)	
af(x)	
f(-x)	
-f(x)	

We can think of it like this:

	Affects which axis?	What we expect or opposite?
Change inside $f()$		
Change outside $f()$		

Examples: Describe the transformation

1.
$$y = f(x - 3)$$

2.
$$y = f(x) + 4$$

3.
$$y = f(5x)$$

4.
$$y = 2f(x)$$

Example

1. Sketch
$$y = x^2 + 3$$

2. Sketch
$$y = \frac{2}{x+1}$$

- 3. Sketch y = x(x + 2). On the same axes, sketch y = (x a)(x a + a)
- 2), where a > 2.

4. Sketch $y = x^2(x - 4)$. On the same axes, sketch the graph with equation $y = (2x)^2(2x - 4)$.

Reflections

Example

If y = x(x + 2), sketch y = f(x) and y = -f(x) on the same axes.

Test your understanding

1. If y = (x + 1)(x - 2), sketch y = f(x) and $y = f(\frac{x}{3})$ on the same axes.

2.	Sketch the graph of $y = \frac{2}{x} + 1$, ensuring you indicate any intercepts with
	the axes.

The effect of transformations on specific points

Sometimes you will not be given the original function, but will be given a sketch with specific points and features you need to transform.

Where would each of these points end up?

y = f(x)	(4, 3)	(1,0)	(6, -4)
y = f(x+1)			
y = f(2x)			
y = 3f(x)			
y = f(x) - 1			
$y = f\left(\frac{x}{4}\right)$			
y = f(-x)			
y = -f(x)			

Test Your Understanding

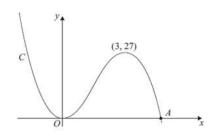


Figure 1 shows a sketch of the curve C with equation y = f(x), where

$$\mathbf{f}(x) = x^2(9 - 2x).$$

There is a minimum at the origin, a maximum at the point (3, 27) and C cuts the x-axis at the point A.

(a) Write down the coordinates of the point A.

(1)

(b) On separate diagrams sketch the curve with equation

(i)
$$y = f(x + 3)$$
,

(ii)
$$y = f(3x)$$
.

On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes.

(6)

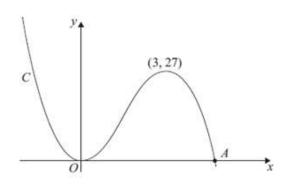
The curve with equation y = f(x) + k, where k is a constant, has a maximum point at (3, 10).

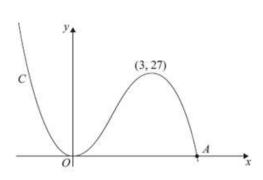
(c) Write down the value of k.

(1)

a)

b)





c)