

P1 Chapter 1 :: Algebraic Expressions

jfrost@tiffin.kingston.sch.uk

www.drfrostmaths.com @DrFrostMaths

Last modified: 26th August 2017

Use of DrFrostMaths for practice

Choose the topics	or select from a scheme of work	Options
KS2/3/4 KS5	₽ Yr7	Difficulty: auto •
Pure Mathematics	Yr8	'Auto' difficulty sets at your current level for each selected topic.
Algebraic Techniques	Yr9	
Coordinate Geometry in the (x,y) plane	Yr10Set1-2	
Exponentials and Logarithms	Edexcel A Level (Mech Yr1)	
Geometry Graphs and Functions	Edexcel A Level (P1)	
 Composite functions. Definition of function and determining 		
values graphically.		Start >
	Regi	ster for free at:
	Regi	ster for free at:
	Regis	ster for free at: <u>v.drfrostmaths.com/homev</u>
If $f(x) = \frac{x-3}{2-x^2}$, determine $f^{-1}(x)$.	Regis www Pract	ster for free at: <u>v.drfrostmaths.com/homev</u> ise questions by chapter, inclu
If $f\left(x ight)=rac{x-3}{2x+1}$, determine $f^{-1}\left(x ight)$.	Regis www Pract past	ster for free at: <u>v.drfrostmaths.com/homev</u> ise questions by chapter, inclu paper Edexcel questions and e
If $f(x)=rac{x-3}{2x+1}$, determine $f^{-1}\left(x ight)$.	Regis www Pract past quest	ster for free at: <u>v.drfrostmaths.com/homev</u> ise questions by chapter, inclu paper Edexcel questions and e tions (e.g. MAT).
If $f(x)=rac{x-3}{2x+1}$, determine $f^{-1}\left(x ight)$.	Regis www Pract past quest	ster for free at: <u>v.drfrostmaths.com/homev</u> ise questions by chapter, inclu- paper Edexcel questions and e tions (e.g. MAT).
If $f(x) = rac{x-3}{2x+1}$, determine $f^{-1}(x)$.	Regis www Pract past quest	ster for free at: <u>v.drfrostmaths.com/homev</u> ise questions by chapter, inclu paper Edexcel questions and e tions (e.g. MAT). hers: you can create student ad

Chapter Overview

As a relatively gentle introduction to Pure, most of this chapter is a recap of core GCSE algebraic skills.

3:: Factorise quadratics/cubics
Factorise fully:
$$x^3 - 16x$$

NEW! (since GCSE) You may have to combine factorisation techniques to factorise cubics.

3

4:: Expand brackets Expand and simplify $(x-3)^2(x+1)$

NEW! (since GCSE)

You've dealt with expressions of the form $\frac{a}{\sqrt{b}}$, but not with more complex denominators such as $\frac{u}{b-\sqrt{c}}$

1 :: Basic Index Laws

We use laws of indices to simplify powers of the same base.

$$a^{m} \times a^{n} = a^{m+n}$$

$$a^{m} \div a^{n} = a^{m-n}$$

$$(a^{m})^{n} = a^{mn}$$

$$(ab)^{n} = a^{n}b^{n}$$

1 :: Basic Index Laws

We use laws of indices to simplify powers of the same base.

$$a^{m} \times a^{n} = a^{m+n}$$

$$a^{m} \div a^{n} = a^{m-n}$$

$$(a^{m})^{n} = a^{mn}$$

$$(ab)^{n} = a^{n}b^{n}$$

Examples:

4. Simplify $\frac{x^3-2x}{3x^2}$

Method 1 : Split the fraction (preferred by textbook!)

?

There are 2 methods for simplifying fractional expressions.

Method 2 : Factorise and simplify

Test Your Understanding

Exercise 1A

Pearson Pure Mathematics Year 1/AS Page 3

2 :: Negative and Fractional Indices (later on in textbook)

$$a^{0} = 1$$

$$a^{\frac{1}{m}} = \sqrt[m]{a}$$

$$a^{\frac{n}{m}} = (\sqrt[m]{a})^{n}$$

$$a^{-m} = \frac{1}{a^{m}}$$

Note: $\sqrt{9}$ only means the <u>positive</u> square root of 9, i.e. 3 not -3. Otherwise, what would be the point of the \pm in the quadratic formula before the $\sqrt{b^2 - 4ac}$?

Exercise 1D

Pearson Pure Mathematics Year 1/AS Page 11

Extension (Full Database: <u>http://www.drfrostmaths.com/resources/resource.php?rid=268</u>)

[MAT 2007 1A]

Let r and s be integers. Then

$$\frac{6^{r+s}\times 12^{r-s}}{8^r\times 9^{r+2s}}$$

is an integer if

 $egin{aligned} & r+s \leq 0 \ & s \leq 0 \ & r \leq 0 \ & r \geq s \ \end{aligned}$

2 :: Expanding Brackets

If you have ever been taught 'FOIL' to multiply brackets please purge it from your mind now – instead:

To expand brackets multiply each term in the first bracket by each term in the second.

$$(x - y)(x + y - 1)$$

= $x^{2} + xy - x - xy - y^{2} + y$
= $x^{2} - y^{2} - x + y$

Tip: My order is "first term in first brackets times each in second, then second term in first bracket times each in second, etc."

For more than 2 brackets, multiply two out each time to reduce the number of brackets by one.

Example: (x + 1)(x + 2)(x + 3)?

Test Your Understanding

Exercise 1B

Pearson Pure Mathematics Year 1/AS Page 5

Extension (Full Database: <u>http://www.drfrostmaths.com/resources/resource.php?rid=268</u>)

[MAT 2002 1B]

Of the following three alleged algebraic identities, at least one is wrong.

(i)
$$yz (z - y) + zx (x - z) + xy (y - x)$$

 $= (z - y) (x - z) (y - x)$
(ii) $yz (z - y) + zx (x - z) + xy (y - x)$
 $= (z - y) (z - x) (y - x)$
(iii) $yz (x + y) + zx (z + x) + xy (y + x)$
 $= (z + y) (z + x) (y + x)$

Which of the following statements are correct? Tick all that apply.

(i)(ii)(iii)

2 [M

[MAT 2007 1E]

If x and n are integers then

$$(1-x)^n (2-x)^{2n} (3-x)^{3n} (4-x)^{4n} (5-x)^{5n}$$

İS:

- \odot negative when n>5 and x<5
- negative when n is odd and x > 5
- Inegative when n is a multiple of 3 and x > 5
- \odot negative when n is even and x < 5

?

3 :: Factorising

A factorised expression is one which is expressed as **a product of expressions**.

$$x(x + 1)(x + 2)$$

Factorised as it is the product of 3 linear factors, x, x + 1 and x + 2.

Note: A linear expression is of the form ax + b. It is called linear because plotting y = ax + b would form a straight line.

$$x(x + 1) + (x - 1)(x + 1)$$

Not factorised because the outer-most operation is a sum, not a product.

Basic Examples:

$$x^{3} + x^{2} = ?$$

 $4x - 8xy = ?$

Factorising Quadratics

Recap:

$$\begin{array}{c} \oplus & \otimes \\ x^2 - 5x - 14 = \end{array}$$

We find two numbers which multiply to give the coefficient of x and multiply to give the constant term.

Fro Note: The *coefficient* of a term is the constant on front of it, e.g. the coefficient of $4x^2$ is 4.

But what if the coefficient of x^2 is not 1?

$$2x^2 + 5x - 12 =$$

The easiest way is to use your common sense to guess the brackets. What multiplies to give the $2x^2$? What multiplies to give the constant term of -12?

Other Factorisations

Difference of two squares:

$$4x^2 - 9 =$$

Using multiple factorisations:

Tip: Always look for a common factor first before using other factorisation techniques.

?

$$x^3 + 3x^2 + 2x$$

Test Your Understanding

Factorise completely: $6x^2 + x - 2$

Factorise completely: $x^4 - 1$

Factorise completely: $x^3 - 1$

Exercise 1C

Pearson Pure Mathematics Year 1/AS Page 8

5 :: Surds

Recap:

A surd is a root of a number that does not simplify to a rational number.

Laws:

$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

Note: A rational number is any which can be expressed as $\frac{a}{b}$ where a, b are integers. $\frac{2}{3}$ and $\frac{4}{1} = 4$ are rational numbers, but π and $\sqrt{2}$ are not.

Exercise 1E

Pearson Pure Mathematics Year 1/AS Page 11

Extension (questions used with permission by the UKMT)

2

[SMC 2014 Q24] Which of the following is smallest?

•
$$10 - 3\sqrt{13}$$

• $8 - 3\sqrt{7}$
• $5 - 2\sqrt{6}$
• $9 - 4\sqrt{5}$
• $7 - 4\sqrt{3}$

[SMC 2012 Q21] Which of the following numbers does *not* have a square root in the form $x + y\sqrt{2}$, where x and y are positive integers?

$$17 + 12\sqrt{2}
22 + 12\sqrt{2}
38 + 12\sqrt{2}
54 + 12\sqrt{2}
73 + 12\sqrt{2}$$

6 :: Rationalising The Denominator

Here's a surd. What could we multiply it by such that it's no longer an irrational number?

In this fraction, the denominator is irrational. 'Rationalising the denominator' means making the denominator a rational number.

What could we multiply this fraction by to both rationalise the denominator, but leave the value of the fraction unchanged? **Note**: There's two reasons why we might want to do this:

- For aesthetic reasons, it makes more sense to say "half of root 2" rather than "one root two-th of 1". It's nice to divide by something whole!
- 2. It makes it easier for us to add expressions involving surds.

More Complex Denominators

You've seen 'rationalising a denominator', the idea being that we don't like to divide things by an irrational number.

But what do we multiply the top and bottom by if we have a more complicated denominator?

$$\frac{1}{\sqrt{2}+1} \times ? = ?$$

We basically use the same expression but with the sign reversed (this is known as the *conjugate*). That way, we obtain the difference of two squares. Since $(a + b)(a - b) = a^2 - b^2$, any surds will be squared and thus we'll end up with no surds in the denominator.

More Examples

$$\frac{3}{\sqrt{6}-2} \times ? = ?$$
You can explicitly expand out
 $(\sqrt{6}-2)(\sqrt{6}+2)$ in the
denominator, but remember that
 $(a-b)(a+b) = a^2 - b^2$ so we
can mentally obtain $6 - 4 = 2$
Just remember: 'difference of two
squares'!

$$\frac{4}{\sqrt{3}+1} \times$$
 ? = ? = ?

$$\frac{3\sqrt{2} + 4}{5\sqrt{2} - 7} \times ? = ?$$

Test Your Understanding

Rationalise the denominator and simplify

$$\frac{2\sqrt{3}-1}{3\sqrt{3}+1}$$

AQA IGCSE FM June 2013 Paper 1

Solve
$$y(\sqrt{3}-1) = 8$$

Give your answer in the form $a + b\sqrt{3}$ where *a* and *b* are integers.

Exercise 1F (Page 15)

or alternatively: (not in textbook)

- 2 Expand and simplify: $(\sqrt{5}+3)(\sqrt{5}-2)(\sqrt{5}+1) = ?$
- Rationalise the denominator, giving your answer in the form $a + b\sqrt{3}$.

$$\frac{3\sqrt{3}+7}{3\sqrt{3}-5} = ?$$

?

Solve
$$x(4 - \sqrt{6}) = 10$$
 giving your answer in the form $a + b\sqrt{6}$.

4

5 Solve
$$y(1 + \sqrt{2}) - \sqrt{2} = 3$$

 $y = \frac{3 + \sqrt{2}}{1 + \sqrt{2}} =$?
Simplify:

$$\frac{6}{\sqrt{a+1} - \sqrt{a}} = ?$$

A final super hard puzzle

Solve $\frac{\sqrt[4]{9}}{\sqrt[5]{27}} = \sqrt[x]{3}$

