

P1 Chapter 9 :: Trigonometric Ratios

jfrost@tiffin.kingston.sch.uk

www.drfrostmaths.com @DrFrostMaths

Last modified: 18th August 2017

Use of DrFrostMaths for practice

Choose the topics	or select from a scheme of work	Options
KS2/3/4 KS5	• Yr7	Difficulty: auto •
Pure Mathematics	Yr8	'Auto' difficulty sets at your current level for each selected topic.
Algebraic Techniques	Yr9	
Coordinate Geometry in the (x,y) plane Differentiation	Yr10Set1-2	
Exponentials and Logarithms	Edexcel A Level (Mech Yr1)	
Graphs and Functions	Edexcel A Level (P1)	
 Composite functions. Definition of function and determining 	•	
values graphically. Discriminant of a quadratic function.		Start >
	Regis	ster for free at:
	www	v.drfrostmaths.com/home
If $f\left(x ight)=rac{x-3}{2x+1}$, determine $f^{-1}\left(x ight)$.	Practi	ise questions by chapter, inclu
If $f\left(x ight)=rac{x-3}{2x+1}$, determine $f^{-1}\left(x ight)$.	Practi past p	ise questions by chapter, inclu paper Edexcel questions and e

Chapter Overview

There is technically no new content in this chapter since GCSE. However, the problems might be more involved than at GCSE level.

2:: Areas of Triangles

In $\triangle ABC$, AB = 5, BC = 6 and $\angle ABC = x$. Given that the area of $\angle ABC$ is 12 cm^2 and that AC is the longest side, find the value of x.

3:: Graphs of Sine/Cosine/Tangent

Sketch $y = \sin(2x)$ for $0 \le x \le 360^{\circ}$

RECAP :: Right-Angled Trigonometry

You are probably familiar with the formula: $sin(\theta) = \frac{opp}{hyp}$ But what is the *conceptual* definition of *sin* ?

Remember that a ratio just means the 'relative size' between quantities (in this case lengths). For this reason, sin/cos/tan are known as "trigonometric ratios".

5

θ

Tip: You can swap the thing you're dividing by and the result. e.g. $\frac{8}{2} = 4 \rightarrow \frac{8}{4} = 2$. I call this the 'swapsie trick'.

You may have been taught "use tan^{-1} whenever you're finding an angle", and therefore write the second line directly. This is fine, but I prefer to always write the first line, then see the problem as a 'changing the subject' one. We need to remove the tan on front of the θ , so apply tan^{-1} to each side of the equation to 'cancel out' the tan on the LHS.

Just for your interest...

OVERVIEW: Finding missing sides and angles

When triangles are not right-angled, we can no longer use simple trigonometric ratios, and must use the cosine and sine rules.

You have	You want	Use	8
#1: Two angle-side	Missing		?
opposite pairs	angle or side	?	6 70°
	in one pair		\sim
#2 Two sides known and a	Remaining		8
missing side opposite a	side	?	40°
known angle			? 9
#3 All three sides	An angle		8
		Ş	?
			6 9
#4 Two sides known and a	Remaining		8 1
missing side not opposite	side	2	40°
known anglo	3100	·	?
KIIUWII aligie			6 \ /

Cosine Rule

We use the cosine rule whenever we have three sides (and an angle) involved.

Proof at end of PowerPoint.

Cosine Rule:

$$a^2 = b^2 + c^2 - 2bc \cos A$$

How are sides labelled ?

Calculation?

Dealing with Missing Angles

4

Textbook Note: The textbook presents the rearrangement of the cosine rule: $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ to find missing angles. I'd personally advise against using this as: (a) It's another formula to remember. (b) Anything that gives you less practice of manipulating/rearranging equations is probably a bad thing. (c) You won't get to use the swapsie trick. \bigotimes

Harder Ones

060°, from coastguard station A. A ship C is 4.8 km on a bearing of 018°, away from A. Calculate how far C is from B.

Test Your Understanding

3

Fro Note: You will get an obtuse angle whenever you inverse cos a negative value.

Exercise 9A

Pearson Pure Mathematics Year 1/AS Pages 177-179

Extension

[STEP I 2009 Q4i]

The sides of a triangle have lengths p - q, p and p + q, where p > q > 0. The largest and smallest angles of the triangle are α and β respectively. Show by means of the cosine rule that

 $4(1 - \cos \alpha)(1 - \cos \beta) = \cos \alpha + \cos \beta$

[2] [STEP I 2007 Q5] Note: a regular octahedron is a polyhedron with eight faces each of which is an equilateral triangle.

- (i) Show that the angle between any two faces of a regular octahedron is $\operatorname{arccos}\left(-\frac{1}{3}\right)$
- (ii) Find the ratio of the volume of a regular octahedron to the volume of the cube whose vertices are the centres of the faces of the octahedron.

Solutions for Q2 on next slide.

Solutions to Extension Question 2

[STEP I 2007 Q5] Note: a regular octahedron is a polyhedron with eight faces each of which is an equilateral triangle.

- (i) Show that the angle between any two faces of a regular octahedron is $\operatorname{arccos}\left(-\frac{1}{2}\right)$
- (ii) Find the ratio of the volume of a regular octahedron to the volume of the cube whose vertices are the centres of the faces of the octahedron.

(Official solutions) Big, clear diagram essential!

The Sine Rule

For this triangle, try calculating each side divided by the sin of its opposite angle. What do you notice in all three cases?

You have	You want	Use
#1: Two angle-side	Missing angle or	Sine rule
opposite pairs	side in one pair	

Examples

You have	You want	Use
#1: Two angle-side	Missing angle or	Sine rule
opposite pairs	side in one pair	

Examples

When you have a missing angle, it's better to reciprocate to get: $\frac{\sin A}{a} = \frac{\sin B}{b}$ i.e. in general put the missing value in the numerator.

Exercise 9B

Pearson Pure Mathematics Year 1/AS Pages 181-183

Extension

[MAT 2011 1E]

The circle in the diagram has centre C. Three angles α , β , γ are also indicated.

The angles α , β , γ are related by the equation:

- A) $\cos \alpha = \sin(\beta + \gamma)$
- $\sin\beta = \sin\alpha\sin\gamma$ B)
- C) $\sin\beta(1-\cos\alpha) = \sin\gamma$
- $sin(\alpha + \beta) = cos \gamma sin \alpha$ D)

Construct triangle ABC such that AB = 4, AC = 3and $\angle ABC = 44^{\circ}$.

The 'Ambiguous Case'

Suppose you are told that AB = 4, AC = 3and $\angle ABC = 44^{\circ}$. What are the possible values of $\angle ACB$?

C is somewhere on the horizontal line. There's two ways in which the length could be 3. Using the sine rule:

> $\frac{\sin C}{4} = \frac{\sin 44}{3}$ C = sin⁻¹(0.9262)

Your calculator will give the acute angle of 67.9° (i.e. C_2). But if we look at a graph of sin, we can see there's actually a second value for sin⁻¹(0.9262), corresponding to angle C_1 .

The sine rule produces two possible solutions for a missing angle: $\sin \theta = \sin(180^\circ - \theta)$ Whether we use the acute or obtuse angle depends on context.

Test Your Understanding

X

Given that the angle θ is obtuse, determine θ and hence determine the length of x.

Pearson Pure Mathematics Year 1/AS Pages 184-185

Area of Non Right-Angled Triangles

Fro Tip: You shouldn't have to label sides/angles before using the formula. Just remember that the angle is <u>between the two sides</u>.

Test Your Understanding

The area of this triangle is 10. Determine x.

The area of this triangle is also 10. If θ is obtuse, determine θ .

Pearson Pure Mathematics Year 1/AS Pages 186-187

Sin or cosine rule?

Sine Cosine

Recall that whenever we have **two "side-angle pairs**" involved, use sine rule. If there's **3 sides** involved, we can use cosine rule. Sine rule is generally easier to use than cosine rule.

Problem Solving With Sine/Cosine Rule

[From Textbook] The diagram shows the locations of four mobile phone masts in a field, BC = 75 m. CD = 80m, angle $BCD = 55^{\circ}$ and angle $ADC = 140^{\circ}$.

In order that the masts do not interfere with each other, they must be at least 70m apart.

Given that A is the minimum distance from D, find:

- a) The distance *A* is from *B*
- b) The angle BAD
- c) The area enclosed by the four masts.

Using sine rule twice

You have	You want	Use
#4 Two sides known	Remaining side	Sine rule
and a missing side <u>not</u>		twice
opposite known angle		

Given there is just one angle involved, you might attempt to use the cosine rule:

?

This is a quadratic equation! It's possible to solve this using the quadratic formula (using $a = 1, b = -8 \cos 32$, c = 7). However, this is a bit fiddly and not the primary method expected in the exam...

Using sine rule twice

You have	You want	Use
#4 Two sides known	Remaining side	Sine rule
and a missing side <u>not</u>		twice
opposite known angle		

Test Your Understanding

Exercise 9E

Pearson Pure Mathematics Year 1/AS Pages 189-191

- 1 [AEA 2009 Q5a] The sides of the triangle ABC have lengths BC = a, AC = b and AB = c, where a < b < c. The sizes of the angles A, B and C form an arithmetic sequence.
 - (i) Show that the area of triangle *ABC* is $ac\frac{\sqrt{3}}{4}$.

Given that a = 2 and $\sin A = \frac{\sqrt{15}}{5}$, find (ii) the value of *b*,

(iii) the value of c.

[STEP I 2006 Q8] Note that the volume of a tetrahedron is equal to

 $\frac{1}{3}$ × area of base × height

The points O, A, B, C have coordinates (0,0,0), (a, 0,0), (0, b, 0) and (0,0, c) respectively, where a, b, c are positive.

(i) Find, in terms of *a*, *b*, *c* the volume of the tetrahedron *OABC*.

(ii) Let angle
$$ACB = \theta$$
. Show that

 $\cos\theta = \frac{c^2}{\sqrt{(a^2 + c^2)(b^2 + c^2)}}$

and find, in terms of a, b and c, the area of triangle *ABC*.

Hence show that d, the perpendicular distance of the origin from the triangle

ABC, satisfies $\frac{1}{d^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$

Solutions to extension problems on next slides.

Solution to Extension Problem 1

[AEA 2009 Q5a] The sides of the triangle ABC have lengths BC = a, AC = b and AB = c, where a < b < c. The sizes of the angles A, B and C form an arithmetic sequence.

(i) Show that the area of triangle *ABC* is $ac \frac{\sqrt{3}}{4}$. Given that a = 2 and $\sin A = \frac{\sqrt{15}}{5}$, find

(ii) the value of b,

(iii) the value of *c*.

Solution to Extension Problem 2

[STEP I 2006 Q8] Note that the volume of a tetrahedron is equal to $\frac{1}{3} \times area \ of \ base \times height$ The points O, A, B, C have coordinates (0,0,0), (a, 0,0), (0, b, 0) and (0,0, c)respectively, where a, b, c are positive.

- (i) Find, in terms of a, b, c the volume of the tetrahedron OABC.
- (ii) Let angle $ACB = \theta$. Show that $\cos \theta = \frac{c^2}{\sqrt{(a^2 + c^2)(b^2 + c^2)}}$ and find, in terms of a, b and c, the area of triangle ABC. Hence show that d, the perpendicular distance of the origin from the triangle ABC, satisfies $\frac{1}{d^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$

(i) The volume of
$$OABC = \frac{1}{3} \times$$
 the area of triangle $OAB \times OC = \frac{1}{6}abc$.
(ii) Using the scalar product with vectors \overrightarrow{CA} and \overrightarrow{CB} , This is FM content, but see a few lines below.
 $\sqrt{a^2 + c^2}\sqrt{b^2 + c^2} \times \cos\theta = \begin{pmatrix} a \\ 0 \\ -c \end{pmatrix} \cdot \begin{pmatrix} 0 \\ b \\ -c \end{pmatrix} = c^2 \Rightarrow \cos\theta = \frac{c^2}{\sqrt{a^2 + c^2}\sqrt{b^2 + c^2}}$
The cosine rule $(AB^2 = AC^2 + BC^2 - 2 \times AC \times BC \times \cos\theta)$ will also yield this result.
The area of triangle ABC will be $\frac{1}{2} \times \sqrt{a^2 + c^2}\sqrt{b^2 + c^2} \times \sin\theta$
 $= \frac{1}{2} \times \sqrt{a^2 + c^2}\sqrt{b^2 + c^2} \times \sqrt{1 - \left(\frac{c^2}{\sqrt{a^2 + c^2}\sqrt{b^2 + c^2}}\right)^2}$ (because $\sin^2\theta \equiv 1 - \cos^2\theta$)
 $= \frac{1}{2} \times \sqrt{(a^2 + c^2)(b^2 + c^2) - c^4}$
 $= \frac{1}{2} \times \sqrt{a^2b^2 + b^2c^2 + c^2a^2}$
So $\frac{1}{3} \times \left(\frac{1}{2} \times \sqrt{a^2b^2 + b^2c^2 + c^2a^2}\right) \times d = \frac{1}{6}abc \Rightarrow \frac{1}{d^2} = \frac{a^2b^2 + b^2c^2 + c^2a^2}{a^2b^2c^2}$

which simplifies to the stated result.

A similar result is true for the right-angled triangle PQR, in which X is the foot of the perpendicular from the right-angle Q to the hypotenuse PR: $\frac{1}{PQ^2} + \frac{1}{QR^2} = \frac{1}{QX^2}$

Sin Graph

What does it look like?

Cos Graph

What do the following graphs look like?

Tan Graph

What does it look like?

Sin Graph

What do the following graphs look like?

Cos Graph

What does it look like?

Tan Graph

What does it look like?

Transforming Trigonometric Graphs

There is no new theory here: just use your knowledge of transforming graphs, i.e. whether the transformation occurs 'inside' the function (i.e. input modified) or 'outside' the function (i.e. output modified).

Transforming Trigonometric Graphs

Sketch $y = -\tan x$, $0 \le x \le 360^{\circ}$?

Sketch $y = \sin\left(\frac{x}{2}\right), 0 \le x \le 360^{\circ}$

Exercise 9F/9G

Pearson Pure Mathematics Year 1/AS Pages 194, 197-198

Extension

[MAT 2013 1B] The graph of $y = \sin x$ is reflected first in the line $x = \pi$ and then in the line y = 2. The resulting graph has equation:

- A) $y = \cos x$
- B) $y = 2 + \sin x$
- C) $y = 4 + \sin x$
- D) $y = 2 \cos x$

[MAT 2011 1D] What fraction of the interval $0 \le x \le 360^\circ$ is one (or both) of the inequalities: $\sin x \ge \frac{1}{2}$, $\sin 2x \ge \frac{1}{2}$

2

APPENDIX :: Proof of Cosine Rule

APPENDIX :: Proof of Sine Rule

The idea is that we can use the common length of $\triangle ACX$ and $\angle XBC$, i.e. h, to connect the two triangles, and therefore connect their angles/length.

