Springwood High School SUMMER TASK 2020

CHEMISTRY

Name:						
Marks Available:		Section	on A = 50	marks and	Section B = 16 m	narks
Marks Achieved:		/ 50	and	/ 16	TOTAL =	/66
www:	1.					
	2.					
	3.					
Action to be	1.					
taken:	2.					
	3.					

Notes to candidate: Answer all questions in both sections A & B.

Use a scientific calculator and a Periodic Table.

Section A: Chemistry Skills

Answer ALL questions in the spaces provided at the end of Task 7

Task 1

Write word equations for each of the following formulae equations:

- 1 HCI + NaOH → NaCI + H₂O
- 2 Mg + 2HCl → MgCl₂ + H₂
- 3 CH₄ + 2O₂ → CO₂ + 2H₂O
- 4 H₂ + I₂ → 2HI
- 5 2Ca + O₂ → 2CaO

Task 2

Choosing from displacement, thermal decomposition, neutralisation, polymerisation or combustion, identify which type of reaction is occurring for each of the following formulae equations:

- 1 $H_2SO_{4 \text{ (ad)}} + 2NaOH_{(ad)} \rightarrow Na_2SO_{4 \text{ (ad)}} + 2H_2O_{(iii)}$
- 2 $CuCO_{3 (s)} \rightarrow CuO_{(s)} + CO_{2 (s)}$
- $\mathbf{3} \qquad \mathrm{Mg}_{\mathrm{(s)}} + \mathrm{CuSO}_{\mathrm{4}\,\mathrm{(aq)}} \rightarrow \mathrm{MgSO}_{\mathrm{4}\,\mathrm{(aq)}} + \mathrm{Cu}_{\mathrm{(s)}}$
- 4 CH_{4 (a)} + 2O_{2 (a)} → CO_{2 (a)} + 2H₂O_(b)
- 5 $nC_2H_4 \rightarrow [C_2H_4]_n$

Task 3

Balance the following equations:

- 1 HCl + Mg → MgCl₂ + H₂
- 2 Li + H₂O → LiOH + H₂
- 3 $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$
- 4 K + H₂SO₄ → K₂SO₄ + H₂
- 5 $C_7H_{16} + O_2 \rightarrow CO_2 + H_2O$

Task 4 - Handling Numbers

- 1. What is 0.4536234 to 2dp?
- 2. What is 64.038279 to 3dp?
- 3. What is 20.46 to the nearest whole number?
- 4. What is 0.0036893 to three significant figures?
- 5. How many significant figures are shown in 6000?
- 6. What is 0.000056 in scientific notation?
- 7. What is 6.3×10^4 in longhand notation?
- 8. What is 4.1×10^{-5} in longhand notation?
- 9. What is 4230000000000000000000 in scientific notation?
- 10. What is 234200 in scientific notation to three significant figures?

Task 5 - SI Units

Convert the following to SI units:

- 1. 37 cm
- 2. 30 minutes
- 3. 100 °C
- 4. $-27^{\circ}C$
- 5. 0.1 g

Task 6 – Rearranging Equations

Rearrange the following equations:

- 1. Find \mathbf{x} if $x^2 = y$
- 2. Find MASS if number of moles = mass / molar mass
- 3. Find **VOLUME** if number of moles = concentration x volume
- 4. Find **h** if E = hv
- 5. Find **R** if pV = nRT

Task 7 - Multiple Choice Questions

- 1 The atomic number tells you the number of:
 - a) electrons
 - b) protons
 - c) neutrons
- 2 An ion is a particle containing:
 - a) a different number of neutrons
 - b) an even number of electrons
 - c) a charge
- 3 The nucleus contains:
 - a) protons and neutrons
 - b) protons and electrons
 - c) neutrons only
- 4 The number of electrons found in an element's outer shell is the same as its:
 - a) atomic number
 - b) group number in the periodic table
 - c) row in the periodic table
- 5 A bond involving a shared pair of electrons is called:
 - a) covalent
 - b) ionic
 - c) metallic
- 6 Metals will bond with non-metals using:
 - a) metallic bonding
 - b) covalent bonding
 - c) ionic bonding
- 7 The relative formula mass of nitric acid, HNO₃, is:
 - a) 61
 - b) 62
 - c) 63
- 8 The formula for magnesium chloride is:
 - a) MgCl
 - b) Mg_oCl
 - c) MgCl₂

- 9 In ionic equations, aluminium ions would be written as:
 - a) Al2+
 - b) Al3+
 - c) Al4+
- 10 During an endothermic reaction the temperature:
 - a) decreases
 - b) increases
 - c) stays constant
- 11 The formula for limestone is:
 - a) CaO
 - b) CaCO,
 - c) Ca(OH),
- 12 In terms of crude oil fractions, what effect will a longer carbon chain have on the boiling point?
 - a) increase the boiling point
 - b) decrease the boiling point
 - c) have no effect
- 13 As you move down group 7 from fluorine to iodine, the reactivity:
 - a) decreases
 - b) increases
 - c) stays the same
- 14 An alkali is a type of base that is:
 - a) insoluble in water
 - b) soluble in water
 - c) produces solutions above pH 10
- 15 A catalyst increases the rate of reaction by:
 - a) providing energy
 - b) blocking reversible reactions
 - c) lowering the activation energy

Task 1 – Writing WORD Equations

1. _____ + ____ + _____ + _____

2. _____ + ____ + _____ + _____

3. _____ + ____ + ____ + ____

4. _____ + ____ → _____

5. _____ + ____ > _____

Task 2 – Classifying Reactions

1.			
2.			
3.			
4.			
5			

Task 3 – Writing BALANCED CHEMICAL EQUATIONS

1. ___ HCl + ___ Mg \rightarrow ___ MgCl₂ + ___ H₂

2. __ Li + __ H_2O \rightarrow __ LiOH + __ H_2

3. $C_3H_8 + C_2 \rightarrow CO_2 + CO_2$

4. ___ K + ___ H_2SO_4 \rightarrow ___ K_2SO_4 + ___ H_2

5. $C_7H_{16} + C_2 \rightarrow CO_2 + CO_2$

Task 4 - Handling Numbers

1.	6.
2.	7.
3.	8.
4.	9.
5.	10.

Task 5 - SI Units

Task 6 – Rearranging Equations

1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Task 7 - Multiple Choice Questions

1.	4.	7.	10.	13.
2.	5.	8.	11.	14.
3.	6.	9.	12.	15.

Section B: Practical Skills

Proof read the following piece of work:

Exp: Sodium Carbonate & Hydrochloric Acid

Word equation:

hydrochloric acid + sodium carbonate → sodium chloride + carbon dioxide + water

Balanced symbol equation:

Equipment:

50ml burette	white tile
25ml glass pipette	phenolphthalein
pipette filler	hydrochloric acid
100ml beakers (x9)	25ml of our solution from the dilution in each run
Burette clamp & stand	ullullon in each fun

Risk Assessment:

Acid – clean up spills

Method:

- 1. We used a 25cm³ glass pipette and a filler to get 25cm³ of our diluted solution and then we put it into a beaker.
- 2. We added three drops of phenolphthalein to the beaker so our solution turned pink.
- 3. Then we used a funnel to pour the hydrochloric acid into the burette until it reached 0cm³ and used a clamp stand to hold the burette over the beaker.

- 4. We then slowly, 1cm³ at a time, let the sulfuric acid pour into our solution and continued this until it became colourless.
- 5. When this happened after each run we recorded down at which point it had changed in a results table.
- 6. Repeat steps 1- 6 to make sure we are accurate and to ensure we had at least three results within 0.1 of each other.

Results:

Titration run	Start volume	Final volume	Titre volume
1	0	28.1	28.1
2	12.0	40.0	40.0
3	0	28.3	28.3
4	0	27.8	27.8
5	0	28	28
6	0	28.2	28.0
7	0	27.6	27.6

Having read the above experiment report, you now need to **identify the eight errors or omissions** for the student to correct.

NOW give written feedback on how to modify and correct the

Highlight or **circle** each error and any repeating errors.

experimental report for each error identified.

	(8)
1.	
2.	

3.	
4.	
5.	
6.	
7.	
8.	